Developing a Visual Analytics Tool for Large-scale Proteomics Time-series Data

被引:0
|
作者
Jenny Vuong [1 ]
Stolte, Christian [2 ]
Kaur, Sandeep [1 ,3 ]
O'Donoghue, Sean [1 ,4 ]
机构
[1] CSIRO, Sydney, NSW, Australia
[2] New York Genome Ctr, New York, NY USA
[3] UNSW, CSE, Sydney, NSW, Australia
[4] Garvan Inst Med Res, Sydney, NSW, Australia
关键词
CYTOSCAPE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High-resolution mass spectrometry can now track all temporal changes in the phosphoproteomes of cells. The resulting time-series datasets pose a challenge ripe for the visual analytics community: how to effectively visualise - in a single graph-time-profiles for many thousands of proteins and protein complexes. To address this challenge we recently proposed a novel graph layout strategy Minardo that uses 'tracks' instead of nodes to communicate cell signalling pathways, displaying all events simultaneously, ordered in clockwise progression. Here, we summarize the key visual concepts used in Minardo to address the complexity of cell signalling data. We also discuss ongoing work on Minardo to allow interactive and collaborative approaches to managing large proteomics time-series datasets.
引用
收藏
页码:68 / 69
页数:2
相关论文
共 50 条
  • [1] An Efficient Visual Assessment of Cluster Tendency Tool for Large-scale Time Series Data Sets
    Iredale, Timothy B.
    Erfani, Sarah M.
    Leckie, Christopher
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [2] Visual Analytics of Large-Scale Climate Model Data
    Wong, Pak Chung
    Shen, Han-Wei
    Leung, Ruby
    Hagos, Samson
    Lee, Teng-Yok
    Tong, Xin
    Lu, Kewei
    [J]. 2014 IEEE 4TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV), 2014, : 85 - 92
  • [3] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [4] Visual Analytics of Phosphorylation Time-Series Data on Insulin Response
    Ma, David K. G.
    Stolte, Christian
    Kaur, Sandeep
    Bain, Michael
    O'Donoghue, Sean I.
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 185 - 196
  • [5] A Sketch plus Fisheye Interface for Visual Analytics of Large Time-Series
    Ren, Lei
    Du, Yi
    [J]. 2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 265 - 266
  • [6] Facility Information Management on HBase: Large-Scale Storage for Time-Series Data
    Ochiai, Hideya
    Ikegami, Hiroyuki
    Teranishi, Yuuichi
    Esaki, Hiroshi
    [J]. 2014 38TH ANNUAL IEEE INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSACW 2014), 2014, : 306 - 311
  • [7] LARGE-SCALE FLUCTUATIONS IN UNDERGROUND MUON TIME-SERIES
    BERGAMASCO, L
    PROVENZALE, A
    OSBORNE, AR
    CASTAGNOLI, GC
    KUDRYAVTSEV, VA
    KUZNETSOV, VA
    RYAZHKAYA, OG
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A3): : 2667 - 2671
  • [8] Visual Imputation Analytics for Missing Time-Series Data in Bayesian Network
    Yeon, Hanbyul
    Son, Hyesook
    Jang, Yun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 303 - 310
  • [9] Visual Analysis Tool for Hierarchical Additive Time-Series Data
    Sakairi, Takashi
    Ishida, Ai
    Achilles, Heather D.
    [J]. 10TH IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS SOLI 2015, 2015, : 18 - 23
  • [10] Collaborative visual analytics for network traffic time-series data with multiple views
    [J]. Wu, Qing (wuqing@csu.edu.cn), 2016, Chinese Academy of Sciences (27):