Visualization Methods for Exploratory Subgroup Discovery on Time Series Data

被引:4
|
作者
Hudson, Dan [1 ]
Wiltshire, Travis J. [2 ]
Atzmueller, Martin [1 ,3 ]
机构
[1] Osnabruck Univ, Semant Informat Syst Grp, Osnabruck, Germany
[2] Tilburg Univ, Dept Cognit Sci & AI, Tilburg, Netherlands
[3] German Res Ctr Artificial Intelligence DFKI, Osnabruck, Germany
基金
荷兰研究理事会;
关键词
Visualization; Subgroup Discovery; Time Series Data;
D O I
10.1007/978-3-031-06527-9_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents visualization methods for exploratory subgroup discovery, focusing on numeric time series data. We provide four novel visualizations for the inspection and understanding of subgroups. These visualizations facilitate interpretation in order to get insights into the data and the respective subgroups, while also supporting statistical interpretation and assessment of the subgroups and their respective parameters. Furthermore, we illustrate the approach in the context of complex time series data - specifically on team interactions in the affective computing context.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 50 条
  • [1] Towards Interactive Visualization of Time Series Data to Support Knowledge Discovery
    Geryk, Jan
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 578 - 583
  • [2] Exploratory analysis of time series data: Detection of partial similarities, clustering, and visualization
    Sadahiro, Yukio
    Kobayashi, Tetsuo
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2014, 45 : 24 - 33
  • [3] A Data Discovery and Visualization Tool for Visual Analytics of Time Series in Digital Agriculture
    Dhaliwal, Jasmin K.
    Galbraith, Megan E.
    Leung, Carson K.
    Tan, Da
    [J]. 2023 27TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV, 2023, : 268 - 271
  • [4] Exploratory methods for relation discovery in archival data
    Giagnolini, Lucia
    Daquino, Marilena
    Mambelli, Francesca
    Tomasi, Francesca
    [J]. DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2023, 38 (01) : 111 - 126
  • [5] Transition Icons for Time-Series Visualization and Exploratory Analysis
    Nickerson, Paul V.
    Baharloo, Raheleh
    Wanigatunga, Amal A.
    Manini, Todd M.
    Tighe, Patrick J.
    Rashidi, Parisa
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 623 - 630
  • [6] Local Exceptionality Detection in Time Series Using Subgroup Discovery: An Approach Exemplified on Team Interaction Data
    Hudson, Dan
    Wiltshire, Travis J.
    Atzmueller, Martin
    [J]. DISCOVERY SCIENCE (DS 2021), 2021, 12986 : 435 - 445
  • [7] Interactive Visualization of Multivariate Time Series Data
    Martin, Shawn
    Quach, Tu-Toan
    [J]. FOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, PT II, 2016, 9744 : 322 - 332
  • [8] Visualization Challenge on Time Series Statistical Data
    Shirota, Yukari
    Hashimoto, Takako
    Chakraborty, Basabi
    [J]. CGI'17: PROCEEDINGS OF THE COMPUTER GRAPHICS INTERNATIONAL CONFERENCE, 2017,
  • [9] Survey and Evaluation of Causal Discovery Methods for Time Series
    Assaad, Charles K.
    Devijver, Emilie
    Gaussier, Eric
    [J]. Journal of Artificial Intelligence Research, 2022, 73 : 767 - 819
  • [10] Survey and Evaluation of Causal Discovery Methods for Time Series
    Assaad, Charles K.
    Devijver, Emilie
    Gaussier, Eric
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 73 : 767 - 819