Robust joint clustering of multi-omics single-cell data via multi-modal high-order neighborhood Laplacian matrix optimization

被引:1
|
作者
Jiang, Hao [1 ]
Zhan, Senwen [1 ]
Ching, Wai-Ki [2 ]
Chen, Luonan [3 ,4 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, CAS Ctr Excellence Mol Cell Sci, Key Lab Syst Biol, 320 YueYang Rd, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Life Sci,Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金;
关键词
MESSENGER-RNA-SEQ;
D O I
10.1093/bioinformatics/btad414
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Simultaneous profiling of multi-omics single-cell data represents exciting technological advancements for understanding cellular states and heterogeneity. Cellular indexing of transcriptomes and epitopes by sequencing allowed for parallel quantification of cell-surface protein expression and transcriptome profiling in the same cells; methylome and transcriptome sequencing from single cells allows for analysis of transcriptomic and epigenomic profiling in the same individual cells. However, effective integration method for mining the heterogeneity of cells over the noisy, sparse, and complex multi-modal data is in growing need. Results: In this article, we propose a multi-modal high-order neighborhood Laplacian matrix optimization framework for integrating the multiomics single-cell data: scHoML. Hierarchical clustering method was presented for analyzing the optimal embedding representation and identifying cell clusters in a robust manner. This novel method by integrating high-order and multi-modal Laplacian matrices would robustly represent the complex data structures and allow for systematic analysis at the multi-omics single-cell level, thus promoting further biological discoveries.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] LIBRA: an adaptative integrative tool for paired single-cell multi-omics data
    Xabier MartinezdeMorentin
    Sumeer AKhan
    Robert Lehmann
    Sisi Qu
    Alberto Maillo
    Narsis AKiani
    Felipe Prosper
    Jesper Tegner
    David GomezCabrero
    [J]. Quantitative Biology., 2023, 11 (03) - 259
  • [42] DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data
    Zou, Guanhua
    Lin, Yilong
    Han, Tianyang
    Le Ou-Yang
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [43] ScMOGAE: A Graph Convolutional Autoencoder-Based Multi-omics Data Integration Framework for Single-Cell Clustering
    Zhou, Benjie
    Jiang, Hongyang
    Wang, Yuezhu
    Gu, Yujie
    Sun, Huiyan
    [J]. BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 322 - 334
  • [44] Multi-modal generative modeling for joint analysis of single-cell T cell receptor and gene expression data
    Drost, Felix
    An, Yang
    Bonafonte-Pardas, Irene
    Dratva, Lisa M.
    Lindeboom, Rik G. H.
    Haniffa, Muzlifah
    Teichmann, Sarah A.
    Theis, Fabian
    Lotfollahi, Mohammad
    Schubert, Benjamin
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [45] Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
    Xiao, Chuxi
    Chen, Yixin
    Meng, Qiuchen
    Wei, Lei
    Zhang, Xuegong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [46] iSMOD: an integrative browser for image-based single-cell multi-omics data
    Zhang, Weihang
    Suo, Jinli
    Yan, Yan
    Yang, Runzhao
    Lu, Yiming
    Jin, Yiqi
    Gao, Shuochen
    Li, Shao
    Gao, Juntao
    Zhang, Michael
    Dai, Qionghai
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (16) : 8348 - 8366
  • [47] scMoresDB: A comprehensive database of single-cell multi-omics data for human respiratory system
    Chen, Kang
    Han, Yutong
    Wang, Yanni
    Zhou, Dingli
    Wu, Fanjie
    Cai, Wenhao
    Zheng, Shikang
    Xiao, Qinyuan
    Zhang, Haiyue
    Li, Weizhong
    [J]. ISCIENCE, 2024, 27 (04)
  • [48] A universal framework for single-cell multi-omics data integration with graph convolutional networks
    Gao, Hongli
    Zhang, Bin
    Liu, Long
    Li, Shan
    Gao, Xin
    Yu, Bin
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [49] Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona
    Cao, Kai
    Hong, Yiguang
    Wan, Lin
    [J]. BIOINFORMATICS, 2022, 38 (01) : 211 - 219
  • [50] BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data
    Wang, Xinjun
    Sun, Zhe
    Zhang, Yanfu
    Xu, Zhongli
    Xin, Hongyi
    Huang, Heng
    Duerr, Richard H.
    Chen, Kong
    Ding, Ying
    Chen, Wei
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (11) : 5814 - 5824