iSMOD: an integrative browser for image-based single-cell multi-omics data

被引:4
|
作者
Zhang, Weihang [1 ]
Suo, Jinli [1 ,2 ,3 ]
Yan, Yan [4 ,5 ,6 ]
Yang, Runzhao [1 ]
Lu, Yiming [1 ]
Jin, Yiqi [1 ]
Gao, Shuochen [1 ]
Li, Shao [1 ,4 ,5 ,6 ]
Gao, Juntao [4 ,5 ,6 ,7 ]
Zhang, Michael [4 ,5 ,6 ,7 ]
Dai, Qionghai [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
[4] Tsinghua Univ, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Bioinformat Div, BNRist, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
[7] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
SILVER-RUSSELL-SYNDROME; VISUALIZATION SYSTEM; SOCIAL NETWORK; NONCODING RNA; PROVIDES; ORGANIZATION; ARCHITECTURE; ASSOCIATION; DYNAMICS; BODIES;
D O I
10.1093/nar/gkad580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic and transcriptomic image data, represented by DNA and RNA fluorescence in situ hybridization (FISH), respectively, together with proteomic data, particularly that related to nuclear proteins, can help elucidate gene regulation in relation to the spatial positions of chromatins, messenger RNAs, and key proteins. However, methods for image-based multi-omics data collection and analysis are lacking. To this end, we aimed to develop the first integrative browser called iSMOD (image-based Single-cell Multi-omics Database) to collect and browse comprehensive FISH and nucleus proteomics data based on the title, abstract, and related experimental figures, which integrates multi-omics studies focusing on the key players in the cell nucleus from 20 000+ (still growing) published papers. We have also provided several exemplar demonstrations to show iSMOD's wide applications-profiling multi-omics research to reveal the molecular target for diseases; exploring the working mechanism behind biological phenomena using multi-omics interactions, and integrating the 3D multi-omics data in a virtual cell nucleus. iSMOD is a cornerstone for delineating a global view of relevant research to enable the integration of scattered data and thus provides new insights regarding the missing components of molecular pathway mechanisms and facilitates improved and efficient scientific research.
引用
收藏
页码:8348 / 8366
页数:19
相关论文
共 50 条
  • [1] Integrative analysis of single-cell multi-omics data of the human retina
    Liang, Qingnan
    Cheng, Xuesen
    Owen, Leah
    Shakoor, Akbar
    Vitale, Albert T.
    Husami, Nadine
    Morgan, Denise
    Farkas, Michael H.
    Kim, Ivana K.
    Li, Yumei
    DeAngelis, Margaret M.
    Chen, Rui
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [2] GLUER: integrative analysis of multi-omics data at single-cell resolution.
    Peng, Tao
    Pourfarhangi, Kamyar Esmaeili
    Tan, Kai
    CANCER RESEARCH, 2020, 80 (21)
  • [3] LIBRA: an adaptative integrative tool for paired single-cell multi-omics data
    Martinez-de-Morentin, Xabier
    Khan, Sumeer A.
    Lehmann, Robert
    Qu, Sisi
    Maillo, Alberto
    Kiani, Narsis A.
    Prosper, Felipe
    Tegner, Jesper
    Gomez-Cabrero, David
    QUANTITATIVE BIOLOGY, 2023, 11 (03) : 246 - 259
  • [4] Editorial: Integrative analysis of single-cell and/or bulk multi-omics sequencing data
    Chen, Geng
    Yu, Rongshan
    Chen, Xingdong
    FRONTIERS IN GENETICS, 2023, 13
  • [5] LIBRA: an adaptative integrative tool for paired single-cell multi-omics data
    Xabier MartinezdeMorentin
    Sumeer AKhan
    Robert Lehmann
    Sisi Qu
    Alberto Maillo
    Narsis AKiani
    Felipe Prosper
    Jesper Tegner
    David GomezCabrero
    Quantitative Biology, 2023, 11 (03) : 246 - 259
  • [6] Integrative Methods and Practical Challenges for Single-Cell Multi-omics
    Ma, Anjun
    McDermaid, Adam
    Xu, Jennifer
    Chang, Yuzhou
    Ma, Qin
    TRENDS IN BIOTECHNOLOGY, 2020, 38 (09) : 1007 - 1022
  • [7] SMGR: a joint statistical method for integrative analysis of single-cell multi-omics data
    Song, Qianqian
    Zhu, Xuewei
    Jin, Lingtao
    Chen, Minghan
    Zhang, Wei
    Su, Jing
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (03)
  • [8] Clustering single-cell multi-omics data with MoClust
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    BIOINFORMATICS, 2023, 39 (01)
  • [9] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [10] Multi-omics single-cell analysis
    Nicole Rusk
    Nature Methods, 2019, 16 : 679 - 679