Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data

被引:0
|
作者
Xiao, Chuxi [1 ]
Chen, Yixin [1 ]
Meng, Qiuchen [1 ]
Wei, Lei [2 ]
Zhang, Xuegong [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, BNRIST, Beijing, Peoples R China
[3] Tsinghua Univ, BNRIST, Bioinformat Div, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
benchmarking; single cell; multi-omics; integration;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Benchmarking algorithms for single-cell multi-omics prediction and integration
    Hu, Yinlei
    Wan, Siyuan
    Luo, Yuanhanyu
    Li, Yuanzhe
    Wu, Tong
    Deng, Wentao
    Jiang, Chen
    Jiang, Shan
    Zhang, Yueping
    Liu, Nianping
    Yang, Zongcheng
    Chen, Falai
    Li, Bin
    Qu, Kun
    NATURE METHODS, 2024, 21 (11) : 2182 - +
  • [2] Benchmarking unpaired single-cell RNA and single-cell ATAC integration
    Chen, Jiani
    Xiao, Wanzi
    Zhang, Eric
    Chen, Xiang
    CANCER RESEARCH, 2024, 84 (06)
  • [3] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [4] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    Nature Communications, 14
  • [6] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [7] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724
  • [8] Multi-omics integration in the age of million single-cell data
    Zhen Miao
    Benjamin D. Humphreys
    Andrew P. McMahon
    Junhyong Kim
    Nature Reviews Nephrology, 2021, 17 : 710 - 724
  • [9] Progress in single-cell multimodal sequencing and multi-omics data integration
    Wang, Xuefei
    Wu, Xinchao
    Hong, Ni
    Jin, Wenfei
    BIOPHYSICAL REVIEWS, 2024, 16 (01) : 13 - 28
  • [10] Progress in single-cell multimodal sequencing and multi-omics data integration
    Xuefei Wang
    Xinchao Wu
    Ni Hong
    Wenfei Jin
    Biophysical Reviews, 2024, 16 : 13 - 28