Paired single-cell multi-omics data integration with Mowgli

被引:5
|
作者
Huizing, Geert-Jan [1 ,2 ]
Deutschmann, Ina Maria [2 ]
Peyre, Gabriel [3 ,4 ]
Cantini, Laura [1 ,2 ]
机构
[1] Univ Paris Cite, Inst Pasteur, CNRS, Machine Learning Integrat Genom Grp,UMR 3738, F-75015 Paris, France
[2] Univ PSL, Ecole Normale Super, Inst Biol, CNRS,INSERM, F-75005 Paris, France
[3] CNRS, F-75005 Paris, France
[4] Univ PSL, DMA Ecole Normale Super, Ecole Normale Super, CNRS, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
TRANSCRIPTION FACTOR; B-LYMPHOCYTES; NK-CELL; RECEPTOR; COMPLEX; PERTURBATIONS; EXPRESSION;
D O I
10.1038/s41467-023-43019-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The profiling of multiple molecular layers from the same set of cells has recently become possible. There is thus a growing need for multi-view learning methods able to jointly analyze these data. We here present Multi-Omics Wasserstein inteGrative anaLysIs (Mowgli), a novel method for the integration of paired multi-omics data with any type and number of omics. Of note, Mowgli combines integrative Nonnegative Matrix Factorization and Optimal Transport, enhancing at the same time the clustering performance and interpretability of integrative Nonnegative Matrix Factorization. We apply Mowgli to multiple paired single-cell multi-omics data profiled with 10X Multiome, CITE-seq, and TEA-seq. Our in-depth benchmark demonstrates that Mowgli's performance is competitive with the state-of-the-art in cell clustering and superior to the state-of-the-art once considering biological interpretability. Mowgli is implemented as a Python package seamlessly integrated within the scverse ecosystem and it is available at http://github.com/cantinilab/mowgli. Mowgli is a novel paired single-cell multi-omics integration method leveraging matrix factorization and Optimal Transport. In-depth benchmarking demonstrates promising cell clustering results and improved biological interpretability.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    [J]. Nature Communications, 14
  • [2] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    [J]. TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [3] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    [J]. NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724
  • [4] Multi-omics integration in the age of million single-cell data
    Zhen Miao
    Benjamin D. Humphreys
    Andrew P. McMahon
    Junhyong Kim
    [J]. Nature Reviews Nephrology, 2021, 17 : 710 - 724
  • [5] LIBRA: an adaptative integrative tool for paired single-cell multi-omics data
    Martinez-de-Morentin, Xabier
    Khan, Sumeer A.
    Lehmann, Robert
    Qu, Sisi
    Maillo, Alberto
    Kiani, Narsis A.
    Prosper, Felipe
    Tegner, Jesper
    Gomez-Cabrero, David
    [J]. QUANTITATIVE BIOLOGY, 2023, 11 (03) : 246 - 259
  • [6] LIBRA: an adaptative integrative tool for paired single-cell multi-omics data
    Xabier MartinezdeMorentin
    Sumeer AKhan
    Robert Lehmann
    Sisi Qu
    Alberto Maillo
    Narsis AKiani
    Felipe Prosper
    Jesper Tegner
    David GomezCabrero
    [J]. Quantitative Biology., 2023, 11 (03) - 259
  • [7] Progress in single-cell multimodal sequencing and multi-omics data integration
    Wang, Xuefei
    Wu, Xinchao
    Hong, Ni
    Jin, Wenfei
    [J]. BIOPHYSICAL REVIEWS, 2024, 16 (01) : 13 - 28
  • [8] Progress in single-cell multimodal sequencing and multi-omics data integration
    Xuefei Wang
    Xinchao Wu
    Ni Hong
    Wenfei Jin
    [J]. Biophysical Reviews, 2024, 16 : 13 - 28
  • [9] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [10] Integration of single-cell multi-omics data by regression analysis on unpaired observations
    Qiuyue Yuan
    Zhana Duren
    [J]. Genome Biology, 23