Exploration of Vehicle Target Detection Method Based on Lightweight YOLOv5 Fusion Background Modeling

被引:5
|
作者
Zhao, Qian [1 ]
Ma, Wenyue [1 ]
Zheng, Chao [2 ]
Li, Lu [2 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian 710054, Peoples R China
[2] Xian Key Lab Network Convergence Commun, Xian 710054, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 07期
基金
中国国家自然科学基金;
关键词
YOLOv5; target detection; ViBe; Ghostnet; CA mechanism; NETWORKS;
D O I
10.3390/app13074088
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the explosive increase per capita in vehicle ownership in China brought about by the continuous development of the economy and society, many negative impacts have arisen, making it necessary to establish the smart city system that has rapidly developing vehicle detection technology as its data acquisition system. This paper proposes a lightweight detection model based on an improved version of YOLOv5 to address the problem of missed and false detections caused by occlusion during rush hour vehicle detection in surveillance videos. The proposed model replaces the BottleneckCSP structure with the Ghostnet structure and prunes the network model to speed up inference. Additionally, the Coordinate Attention Mechanism is introduced to enhance the network's feature extraction and improve its detection and recognition ability. Distance-IoU Non-Maximum Suppression replaces Non-Maximum Suppression to address the issue of false detection and omission when detecting congested targets. Lastly, the combination of the five-frame differential method with VIBE and MD-SILBP operators is used to enhance the model's feature extraction capabilities for vehicle contours. The experimental results show that the proposed model outperforms the original model in terms of the number of parameters, inference ability, and accuracy when applied to both the expanded UA-DETRAC and a self-built dataset. Thus, this method has significant industrial value in intelligent traffic systems and can effectively improve vehicle detection indicators in traffic monitoring scenarios.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [31] Improved lightweight road damage detection based on YOLOv5
    Chang Liu
    Yu Sun
    Jin Chen
    Jing Yang
    Fengchao Wang
    Optoelectronics Letters, 2025, 21 (5) : 314 - 320
  • [32] A lightweight waxberry fruit detection model based on YOLOv5
    Yang, Chengyu
    Liu, Jun
    He, Jianting
    IET IMAGE PROCESSING, 2024, 18 (07) : 1796 - 1808
  • [33] A lightweight vehicles detection network model based on YOLOv5
    Dong, Xudong
    Yan, Shuai
    Duan, Chaoqun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [34] A Lightweight Model Based on YOLOv5 for Helmet Wearing Detection
    Zou, Xiongxin
    Chen, Zuguo
    Zhou, Yimin
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [35] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [36] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [37] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [38] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320
  • [39] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [40] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361