Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

被引:3
|
作者
Ha, Chung Shing Rex [1 ,2 ,3 ]
Mueller-Nurasyid, Martina K. [1 ,2 ,4 ,5 ]
Petrera, Agnese P. [6 ]
Hauck, Stefanie [6 ]
Marini, Federico K. [1 ,7 ]
Bartsch, Detlef K. [8 ]
Slater, Emily K. [8 ]
Strauch, Konstantin K. [1 ,2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
[2] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[3] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Chair Genet Epidemiol Biometry & Epidemiol IBE, Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc Biometry & Epidemiol IBE, Fac Med, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Pettenkofer Sch Publ Hlth Munich Biometry & Epidem, Munich, Germany
[6] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Res Unit Prot Sci & Metabol & Prote Core Facil, Neuherberg, Germany
[7] Univ Med Ctr, Johannes Gutenberg Univ, Res Ctr Immunotherapy FZI, Mainz, Germany
[8] Philipps Univ, Dept Visceral Thorac & Vasc Surg, Marburg, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
BINDING PROTEIN; R PACKAGE; EXPRESSION; RISK; ADENOCARCINOMA; REGULARIZATION; PREDICTION; MOLECULE; HOMOLOG; CLONING;
D O I
10.1371/journal.pone.0280399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results' interpretability. MethodsWe applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. ResultsIn the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. ConclusionAdvanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Targeted Proteomics Profiling for Biomarker Discovery in Glaucoma Using the Olink Proteomics Platform
    Zhang, Hui-Ying
    Liu, Qing
    Wang, Feng-Sheng
    Mu, Wan
    Zhu, Yue
    Zhang, Qiu-Yang
    Feng, Si-Guo
    Yao, Jin
    Yan, Biao
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (10) : 4674 - 4683
  • [42] Statistical Considerations of Optimal Study Design for Human Plasma Proteomics and Biomarker Discovery
    Zhou, Cong
    Simpson, Kathryn L.
    Lancashire, Lee J.
    Walker, Michael J.
    Dawson, Martin J.
    Unwin, Richard D.
    Rembielak, Agata
    Price, Patricia
    West, Catharine
    Dive, Caroline
    Whetton, Anthony D.
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (04) : 2103 - 2113
  • [43] High-throughput proteomics and AI for cancer biomarker discovery
    Xiao, Qi
    Zhang, Fangfei
    Xu, Luang
    Yue, Liang
    Kon, Oi Lian
    Zhu, Yi
    Guo, Tiannan
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 176
  • [44] Proteomics in translational cancer research: biomarker discovery for clinical applications
    Cho, William C. S.
    EXPERT REVIEW OF PROTEOMICS, 2014, 11 (02) : 131 - 133
  • [45] Cancer proteomics: From biomarker discovery to signal pathway profiling
    Bichsel, VE
    Liotta, LA
    Petricoin, EF
    CANCER JOURNAL, 2001, 7 (01): : 69 - 78
  • [46] Biomarker discovery in lung cancer - Promises and challenges of clinical proteomics
    Bharti, Ajit
    Ma, Patrick C.
    Salgia, Ravi
    MASS SPECTROMETRY REVIEWS, 2007, 26 (03) : 451 - 466
  • [47] Plasma proteomics invitation to cervical cancer potential biomarker discovery
    Kim, H.
    Kim, N.
    Kim, Y. N.
    Jeong, D. H.
    Lee, D. S.
    Kim, K. T.
    Youm, J. B.
    Park, W. S.
    Warda, M.
    Kang, S.
    Kim, T. H.
    Prince, A. -E. B.
    Kim, E.
    Han, J.
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : S213 - S213
  • [48] Proteomics-driven cancer biomarker discovery: looking to the future
    Simpson, Richard J.
    Bernhard, Oliver K.
    Greening, David W.
    Moritz, Robert L.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2008, 12 (01) : 72 - 77
  • [49] The role of proteomics in prostate cancer research: Biomarker discovery and validation
    Pin, Elisa
    Fredolini, Claudia
    Petricoin, Emanuel F., III
    CLINICAL BIOCHEMISTRY, 2013, 46 (06) : 524 - 538
  • [50] Clinical proteomics: applications for prostate cancer biomarker discovery and detection
    Petricoin, EF
    Ornstein, DK
    Liotta, LA
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2004, 22 (04) : 322 - 328