Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

被引:3
|
作者
Ha, Chung Shing Rex [1 ,2 ,3 ]
Mueller-Nurasyid, Martina K. [1 ,2 ,4 ,5 ]
Petrera, Agnese P. [6 ]
Hauck, Stefanie [6 ]
Marini, Federico K. [1 ,7 ]
Bartsch, Detlef K. [8 ]
Slater, Emily K. [8 ]
Strauch, Konstantin K. [1 ,2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
[2] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[3] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Chair Genet Epidemiol Biometry & Epidemiol IBE, Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc Biometry & Epidemiol IBE, Fac Med, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Pettenkofer Sch Publ Hlth Munich Biometry & Epidem, Munich, Germany
[6] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Res Unit Prot Sci & Metabol & Prote Core Facil, Neuherberg, Germany
[7] Univ Med Ctr, Johannes Gutenberg Univ, Res Ctr Immunotherapy FZI, Mainz, Germany
[8] Philipps Univ, Dept Visceral Thorac & Vasc Surg, Marburg, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
BINDING PROTEIN; R PACKAGE; EXPRESSION; RISK; ADENOCARCINOMA; REGULARIZATION; PREDICTION; MOLECULE; HOMOLOG; CLONING;
D O I
10.1371/journal.pone.0280399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results' interpretability. MethodsWe applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. ResultsIn the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. ConclusionAdvanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Global proteomics and metabolomics in cancer biomarker discovery
    Issaq, Haleem J.
    Fox, Stephen D.
    Chan, King C.
    Veenstra, Timothy D.
    JOURNAL OF SEPARATION SCIENCE, 2011, 34 (24) : 3484 - 3492
  • [22] A large-scale proteomics resource of circulating extracellular vesicles for biomarker discovery in pancreatic cancer
    Bockorny, Bruno
    Muthuswamy, Lakshmi
    Huang, Ling
    Hadisurya, Marco
    Lim, Christine Maria
    Tsai, Leo L.
    Gill, Ritu R.
    Wei, Jesse L.
    Bullock, Andrea J.
    Grossman, Joseph E.
    Besaw, Robert J.
    Narasimhan, Supraja
    Tao, Weiguo Andy
    Perea, Sofia
    Sawhney, Mandeep S.
    Freedman, Steven D.
    Hildago, Manuel
    Iliuk, Anton
    Muthuswamy, Senthil K.
    ELIFE, 2024, 12
  • [23] Serum biomarker discovery using proteomics approaches to predict prostate cancer recurrence
    White, CN
    Zhang, Z
    Chappell, D
    Rosenzweig, JM
    Sokoll, LJ
    Partin, AW
    Chan, DW
    JOURNAL OF UROLOGY, 2005, 173 (04): : 383 - 383
  • [24] Clinical proteomics: From biomarker discovery and cell signaling profiles to individualized personal therapy
    Calvo, KR
    Liotta, LA
    Petricoin, EF
    BIOSCIENCE REPORTS, 2005, 25 (1-2) : 107 - 125
  • [25] Proteomics as a tool for biomarker discovery in colon cancer research
    Haid, D.
    Bahram, F.
    Ronn, O.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S111 - S111
  • [26] Proteomics strategies for target identification and biomarker discovery in cancer
    Rajcevic, Uros
    Niclou, Simone P.
    Jimenez, Connie R.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2009, 14 : 3292 - 3303
  • [27] Breast Cancer Biomarker Discovery: Proteomics and Genomics Approaches
    Safaei, Akram
    Rezaei-Tavirani, Mostafa
    Sobhi, Sara
    Akbari, Mohammad Esmaeil
    IRANIAN JOURNAL OF CANCER PREVENTION, 2013, 6 : 45 - 53
  • [28] Prevention of pancreatic cancer and strategies for management of familial pancreatic cancer
    Hruban, RH
    Canto, MI
    Yeo, CJ
    DIGESTIVE DISEASES, 2001, 19 (01) : 76 - 84
  • [29] Clinical Proteomics for Cancer Biomarker Discovery and Therapeutic Targeting
    Krieg, Rene C.
    Paweletz, Cloud P.
    Liotta, Lance A.
    Petricoin, Emanuel F., III
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2002, 1 (04) : 263 - 272
  • [30] Colorectal cancer proteomics, molecular characterization and biomarker discovery
    Barderas, Rodrigo
    Babel, Ingrid
    Ignacio Casal, Jose
    PROTEOMICS CLINICAL APPLICATIONS, 2010, 4 (02) : 159 - 178