Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

被引:3
|
作者
Ha, Chung Shing Rex [1 ,2 ,3 ]
Mueller-Nurasyid, Martina K. [1 ,2 ,4 ,5 ]
Petrera, Agnese P. [6 ]
Hauck, Stefanie [6 ]
Marini, Federico K. [1 ,7 ]
Bartsch, Detlef K. [8 ]
Slater, Emily K. [8 ]
Strauch, Konstantin K. [1 ,2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
[2] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[3] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Chair Genet Epidemiol Biometry & Epidemiol IBE, Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc Biometry & Epidemiol IBE, Fac Med, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Pettenkofer Sch Publ Hlth Munich Biometry & Epidem, Munich, Germany
[6] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Res Unit Prot Sci & Metabol & Prote Core Facil, Neuherberg, Germany
[7] Univ Med Ctr, Johannes Gutenberg Univ, Res Ctr Immunotherapy FZI, Mainz, Germany
[8] Philipps Univ, Dept Visceral Thorac & Vasc Surg, Marburg, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
BINDING PROTEIN; R PACKAGE; EXPRESSION; RISK; ADENOCARCINOMA; REGULARIZATION; PREDICTION; MOLECULE; HOMOLOG; CLONING;
D O I
10.1371/journal.pone.0280399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results' interpretability. MethodsWe applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. ResultsIn the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. ConclusionAdvanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Using chemometrics and statistics to improve proteomics biomarker discovery
    Spiegelman, CH
    Pfeiffer, R
    Gail, M
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (03) : 461 - 462
  • [32] Extracellular Vesicle Biomarker Discovery for Dystonia Using Proteomics
    King, Connor S.
    Caffall, Zachary F.
    Calakos, Nicole
    ANNALS OF NEUROLOGY, 2021, 90 : S162 - S162
  • [33] Biomarker discovery in glomerular diseases using urinary proteomics
    Thongboonkerd, Visith
    PROTEOMICS CLINICAL APPLICATIONS, 2008, 2 (10-11) : 1413 - 1421
  • [34] Metabolomic profiling for biomarker discovery in pancreatic cancer
    Kaur, Prabhjit
    Sheikh, Kathryn
    Kirilyuk, Alexander
    Kirilyuk, Ksenia
    Singh, Rajbir
    Ressom, Habtom W.
    Cheema, Amrita K.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2012, 310 : 44 - 51
  • [35] Novel approach for pancreatic cancer biomarker discovery
    不详
    BIOMARKERS IN MEDICINE, 2009, 3 (04) : 343 - 344
  • [36] Discovery of a possible new biomarker for pancreatic cancer
    不详
    BIOMARKERS IN MEDICINE, 2007, 1 (02) : 225 - 225
  • [38] Proteomic profiling of pancreatic cancer for biomarker discovery
    Chen, R
    Pan, S
    Brentnall, TA
    Aebersold, R
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (04) : 523 - 533
  • [39] Metabolomic profiling for biomarker discovery in pancreatic cancer
    Prabhjit
    Kaur
    Sheikh, Kathryn
    Kirilyuk, Alexander
    Kirilyuk, Ksenia
    Ressom, Habtom W.
    Cheema, Amrita K.
    Kallakury, Bhaskar
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 505 - 509
  • [40] Pancreatic ductal adenocarcinoma metastatic biomarker discovery using machine learning approach
    Mahawan, T.
    Mielgo, A.
    Pornputtapong, N.
    Caamano-Gutierrez, E.
    FEBS OPEN BIO, 2024, 14 : 338 - 338