Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

被引:3
|
作者
Ha, Chung Shing Rex [1 ,2 ,3 ]
Mueller-Nurasyid, Martina K. [1 ,2 ,4 ,5 ]
Petrera, Agnese P. [6 ]
Hauck, Stefanie [6 ]
Marini, Federico K. [1 ,7 ]
Bartsch, Detlef K. [8 ]
Slater, Emily K. [8 ]
Strauch, Konstantin K. [1 ,2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
[2] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany
[3] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Chair Genet Epidemiol Biometry & Epidemiol IBE, Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc Biometry & Epidemiol IBE, Fac Med, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Inst Med Informat Proc, Fac Med, Pettenkofer Sch Publ Hlth Munich Biometry & Epidem, Munich, Germany
[6] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Res Unit Prot Sci & Metabol & Prote Core Facil, Neuherberg, Germany
[7] Univ Med Ctr, Johannes Gutenberg Univ, Res Ctr Immunotherapy FZI, Mainz, Germany
[8] Philipps Univ, Dept Visceral Thorac & Vasc Surg, Marburg, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
BINDING PROTEIN; R PACKAGE; EXPRESSION; RISK; ADENOCARCINOMA; REGULARIZATION; PREDICTION; MOLECULE; HOMOLOG; CLONING;
D O I
10.1371/journal.pone.0280399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results' interpretability. MethodsWe applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. ResultsIn the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. ConclusionAdvanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Proteomics Biomarker Discovery for Individualized Prevention of Familial Pancreatic Cancer Using Statistical Learning
    Ha, Chung Shing Rex
    Mueller-Nurasyid, Martina
    Petrera, Agnese
    Hauck, Stefanie M.
    Bartsch, Detlef K.
    Slater, Emily P.
    Strauch, Konstantin
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 498 - 498
  • [2] Discovery of Soluble Pancreatic Cancer Biomarkers Using Innovative Clinical Proteomics and Statistical Learning
    Tosato, G.
    Souche, F. R.
    Riviere, B.
    Fabre, J. M.
    Pourqier, D.
    Assenat, E.
    Colinge, J.
    Turtoi, A.
    PANCREAS, 2021, 50 (07) : 1103 - 1104
  • [3] Proteomics for cancer biomarker discovery
    Srinivas, PR
    Verma, M
    Zhao, YM
    Srivastava, S
    CLINICAL CHEMISTRY, 2002, 48 (08) : 1160 - 1169
  • [4] Colorectal Cancer Biomarker Discovery Using Quantitative Proteomics
    Goodbrand, Sarah A.
    Lamont, Douglas
    Ferguson, Michael A.
    Steele, Robert J.
    GASTROENTEROLOGY, 2009, 136 (05) : A749 - A749
  • [5] Biomarker discovery by plasma proteomics in familial Brugada Syndrome
    Di Domenico, M.
    Scumaci, D.
    Grasso, S.
    Gaspari, M.
    Curcio, A.
    Oliva, A.
    Ausania, F.
    Di Nunzio, C.
    Ricciardi, C.
    Santini, A. C.
    Rizzo, F. A.
    Carratelli, C. Romano
    Lamberti, M.
    Conti, D.
    La Montagna, R.
    Tomei, V.
    Malafoglia, V.
    Pascali, V. L.
    Ricci, P.
    Indolfi, C.
    Costanzo, F.
    Cuda, G.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2013, 18 : 564 - 571
  • [6] Application of proteomics in cancer biomarker discovery
    Raghavakaimal, S
    ONCOLOGY RESEARCH, 2006, 15 (10-12) : 457 - 457
  • [7] Proteomics in the forefront of cancer biomarker discovery
    Srivastava, S
    Srivastava, RG
    JOURNAL OF PROTEOME RESEARCH, 2005, 4 (04) : 1098 - 1103
  • [8] Proteomics in prostate cancer biomarker discovery
    Larkin, Samantha E. T.
    Zeidan, Bashar
    Taylor, Matthew G.
    Bickers, Bridget
    Al-Ruwaili, Jamal
    Aukim-Hastie, Claire
    Townsend, Paul A.
    EXPERT REVIEW OF PROTEOMICS, 2010, 7 (01) : 93 - 102
  • [9] Quantitative Proteomics for Cancer Biomarker Discovery
    Liang, Shufang
    Xu, Zhizhong
    Xu, Xuejiao
    Zhao, Xia
    Huang, Canhua
    Wei, Yuquan
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2012, 15 (03) : 221 - 231
  • [10] BIOMARKER DISCOVERY BY PLASMA PROTEOMICS IN FAMILIAL LMNA DILATED CARDIOMYOPATHY
    Izquierdo, I.
    De Gonzalo-Calvo, D.
    Llorente-Cortes, V.
    Rosa, I.
    Brugada, R.
    Oscar, C.
    Perez-Serra, A.
    Broncano, J.
    Luna, A.
    Vazquez-Alfageme, J.
    Gonzalez-Juanatey, J. R.
    Mangas, A.
    Garcia, A.
    Toro, R.
    ATHEROSCLEROSIS, 2016, 252 : E72 - E72