Discrete integrable systems associated with relativistic collisions

被引:2
|
作者
Kouloukas, Theodoros E. [1 ]
机构
[1] Univ Lincoln, Sch Math & Phys, Lincoln, England
关键词
Discrete integrable systems; Yang-Baxter maps; 3D consistent lattice equations; Poisson structures; Relativistic collisions; YANG-BAXTER MAPS; MAPPINGS;
D O I
10.1016/j.physd.2023.133937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study vector quadrirational Yang-Baxter maps representing the momentum-energy transformation of two particles after elastic relativistic collisions. The collision maps admit Lax representations compatible with an r-matrix Poisson structure and correspond to integrable systems of quadrilateral lattice equations.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Discrete Moving Frames and Discrete Integrable Systems
    Mansfield, Elizabeth
    Beffa, Gloria Mari
    Wang, Jing Ping
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2013, 13 (04) : 545 - 582
  • [12] Discrete Moving Frames and Discrete Integrable Systems
    Elizabeth Mansfield
    Gloria Marí Beffa
    Jing Ping Wang
    Foundations of Computational Mathematics, 2013, 13 : 545 - 582
  • [13] Multisoliton collisions in nearly integrable systems
    Frauenkron, H
    Kivshar, YS
    Malomed, BA
    PHYSICAL REVIEW E, 1996, 54 (03) : R2244 - R2247
  • [14] A discrete spectral problem and associated two types of integrable coupling systems
    Li, Xin-Yue
    Zhao, Qiu-Lan
    Li, Yu-Xia
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2013, 1562 : 93 - 104
  • [15] On some integrable discrete-time systems associated with the Bogoyavlensky lattices
    Papageorgiou, VG
    Nijhoff, FW
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 228 (1-4) : 172 - 188
  • [16] Special solutions of discrete integrable systems
    Ohta, Y
    DISCRETE INTEGRABLE SYSTEMS, 2004, 644 : 57 - 83
  • [17] Duality for discrete integrable systems II
    van der Kamp, Peter H.
    Quispel, G. R. W.
    Zhang, Da-Jun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [18] Discrete and Continuous Integrable Systems - Preface
    Ohyama, Yousuke
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1712 - 1713
  • [19] Discrete integrable systems: Multidimensional consistency
    Zhang Da-Jun
    ACTA PHYSICA SINICA, 2020, 69 (01)
  • [20] THE INTEGRABLE MAPPING AS THE DISCRETE GROUP OF INNER SYMMETRY OF INTEGRABLE SYSTEMS
    FAIRLIE, DB
    LEZNOV, AN
    PHYSICS LETTERS A, 1995, 199 (5-6) : 360 - 364