Multisoliton collisions in nearly integrable systems

被引:19
|
作者
Frauenkron, H
Kivshar, YS
Malomed, BA
机构
[1] AUSTRALIAN NATL UNIV, AUSTRALIAN PHOTON COOPERAT RES CTR, CANBERRA, ACT 0200, AUSTRALIA
[2] TEL AVIV UNIV, SCH MATH SCI, DEPT APPL MATH, IL-69978 TEL AVIV, ISRAEL
关键词
D O I
10.1103/PhysRevE.54.R2244
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe basic features of multisoliton collisions in nearly integrable systems taking a perturbed nonlinear Schrodinger equation as an example, Collision of two solitons is shown to become inelastic only due to radiation losses, so that the change of the soliton parameters is small (similar to epsilon(2), where epsilon is the perturbation amplitude). For three-soliton collisions we demonstrate, by using a simplectic numerical integration, the existence of a nontrivial nonradiative energy exchange between the colliding solitons already in the first order in epsilon.
引用
收藏
页码:R2244 / R2247
页数:4
相关论文
共 50 条
  • [1] NEARLY INTEGRABLE SYSTEMS
    KOMADA, Y
    PHYSICA D, 1985, 16 (01): : 14 - 26
  • [2] MULTISOLITON FORMULA FOR COMPLETELY INTEGRABLE 2-DIMENSIONAL SYSTEMS
    CHUDNOVSKY, DV
    CHUDNOVSKY, GV
    LETTERE AL NUOVO CIMENTO, 1979, 25 (09): : 263 - 265
  • [3] Canonical perturbation theory for nearly integrable systems - Introduction to the canonical perturbation theory for nearly integrable systems
    Giorgilli, Antonio
    Locatelli, Ugo
    Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, 2006, 227 : 1 - 41
  • [4] Recurrence of fidelity in nearly integrable systems
    Sankaranarayanan, R
    Lakshminarayan, A
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [5] SOLITONS AND CHAOS IN NEARLY INTEGRABLE SYSTEMS
    CHRISTIANSEN, PO
    PHYSICA D, 1984, 11 (03): : 401 - 401
  • [6] Level statistics for nearly integrable systems
    Abul-Magd, A. Y.
    PHYSICAL REVIEW E, 2009, 80 (01):
  • [7] DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS
    KIVSHAR, YS
    MALOMED, BA
    REVIEWS OF MODERN PHYSICS, 1989, 61 (04) : 763 - 915
  • [8] Flexibility of sections of nearly integrable Hamiltonian systems
    Burago, Dmitri
    Chen, Dong
    Ivanov, Sergei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (04)
  • [9] STABILITY OF NEARLY-INTEGRABLE SYSTEMS WITH DISSIPATION
    Lhotka, Christoph
    Celletti, Alessandra
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (02):
  • [10] Arnold diffusion for nearly integrable Hamiltonian systems
    Cheng, Chong-Qing
    Xue, Jinxin
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (08) : 1649 - 1712