Discrete integrable systems associated with relativistic collisions

被引:2
|
作者
Kouloukas, Theodoros E. [1 ]
机构
[1] Univ Lincoln, Sch Math & Phys, Lincoln, England
关键词
Discrete integrable systems; Yang-Baxter maps; 3D consistent lattice equations; Poisson structures; Relativistic collisions; YANG-BAXTER MAPS; MAPPINGS;
D O I
10.1016/j.physd.2023.133937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study vector quadrirational Yang-Baxter maps representing the momentum-energy transformation of two particles after elastic relativistic collisions. The collision maps admit Lax representations compatible with an r-matrix Poisson structure and correspond to integrable systems of quadrilateral lattice equations.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation
    Yang, Hong-Xiang
    Xu, Xi-Xiang
    Sun, Ye-Peng
    Ding, Hai-Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (15): : 3933 - 3947
  • [32] Hamiltonian systems and its integrable coupling associated with a new discrete spectral problem
    Luo, Lin
    Fan, Engui
    PHYSICS LETTERS A, 2007, 370 (3-4) : 234 - 242
  • [33] Discrete relativistic positioning systems
    Carloni, S.
    Fatibene, L.
    Ferraris, M.
    McLenaghan, R. G.
    Pinto, P.
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (02)
  • [34] Discrete relativistic positioning systems
    S. Carloni
    L. Fatibene
    M. Ferraris
    R. G. McLenaghan
    P. Pinto
    General Relativity and Gravitation, 2020, 52
  • [35] Integrable discrete systems on R and related dispersionless systems
    Blaszak, Maciej
    Guerses, Metin
    Silindir, Burcu
    Szablikowski, Blazej M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [36] Positive and negative hierarchies of nonlinear integrable lattice models and three integrable coupling systems associated with a discrete spectral problem
    Sun, YP
    Chen, DY
    Xu, XX
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (11) : 2604 - 2618
  • [37] Direct linearization approach to discrete integrable systems associated with Z? graded Lax pairs
    Fu, Wei
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2237):
  • [38] Discrete Integrable Systems and Random Lax Matrices
    Tamara Grava
    Massimo Gisonni
    Giorgio Gubbiotti
    Guido Mazzuca
    Journal of Statistical Physics, 2023, 190
  • [39] From Nothing to Something:Discrete Integrable Systems
    楼森岳
    李玉奇
    唐晓艳
    Chinese Physics Letters, 2013, 30 (08) : 8 - 12
  • [40] r-Matrices for Relativistic Deformations of Integrable Systems
    Yuri B. Suris
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 411 - 447