HYPER-SPECTRAL IMAGE CLASSIFICATION USING ADIABATIC QUANTUM COMPUTATION

被引:1
|
作者
Gardas, Bartlomiej [1 ]
Glomb, Przemyslaw [1 ]
Sadowski, Przemyslaw [1 ]
Puchala, Zbigniew [1 ]
Jalowiecki, Konrad [1 ]
Pawela, Lukasz [1 ]
Faucoz, Orphee [2 ]
Brunet, Pierre-Marie [2 ]
Gawron, Piotr [1 ,3 ]
van Waveren, Matthijs [4 ]
Savinaud, Mickael [4 ]
Pasero, Guillaume [4 ]
Defonte, Veronique [4 ]
机构
[1] PAS, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] CNES, 10 Ave Edouard Belin, F-31401 Toulouse, France
[3] PAS, Nicolaus Copernicus Astron Ctr, AstroCeNT, Rektorska 4, PL-00614 Warsaw, Poland
[4] CS GRP, 6 Rue Brindejonc Moulinais, F-31506 Toulouse, France
关键词
hyper-spectral image segmentation; energy-based models; quantum annealing;
D O I
10.1109/IGARSS52108.2023.10282125
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Supervised machine learning techniques are widely used for hyper-spectral images segmentation. A typical simple scheme of classification of such images probabilistically assigns a label to each individual pixel omitting information about pixel surroundings. In order to achieve better classification results for real world images one has to agree the local label obtained from the classifier with the classes of pixel neighborhood. A popular way to do it is through a probabilistic graphical model, where label distributions for individual pixels are mapped into a graph of neighborhood relations. One way to realize this approach is to use Ising models, where class probability is mapped to spin energy and class-class interaction is mapped to the spins coupling. By finding low energy states of such an Ising model we can perform post-processing of segmented images. In this work we present how this post-processing can be implemented using a quantum annealer.
引用
收藏
页码:620 / 623
页数:4
相关论文
共 50 条
  • [31] An effective feature segmentation algorithm for a hyper-spectral facial image
    Zhao Y.
    Wu M.
    Zhang L.
    Wang J.
    Wei D.
    Wu, Mengmeng (m15169076812@163.com), 2018, MDPI AG (09):
  • [32] Regularized selection indices for breeding value prediction using hyper-spectral image data
    Marco Lopez-Cruz
    Eric Olson
    Gabriel Rovere
    Jose Crossa
    Susanne Dreisigacker
    Suchismita Mondal
    Ravi Singh
    Gustavo de los Campos
    Scientific Reports, 10
  • [33] A multi-layered decomposition of hyper-spectral image compression
    Zhang, Lei
    Huang, Lian-Qing
    Zhao, Wei-Jia
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2006, 14 (03): : 478 - 484
  • [34] Hyper-Spectral Image Pixel Classification Based on Golden Sine and Chaotic Spotted Hyena Optimization Algorithm
    Yang, Xiping
    Cheng, Lifang
    IEEE ACCESS, 2023, 11 : 89757 - 89768
  • [35] Regularized selection indices for breeding value prediction using hyper-spectral image data
    Lopez-Cruz, Marco
    Olson, Eric
    Rovere, Gabriel
    Crossa, Jose
    Dreisigacker, Susanne
    Mondal, Suchismita
    Singh, Ravi
    de los Campos, Gustavo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [36] Benchmarking Jetson Platform for 3D Point-Cloud and Hyper-Spectral Image Classification
    Ullah, Shan
    Kim, Deok-Hwan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 477 - 482
  • [37] Hyper-spectral image segmentation using an improved PSO aided with multilevel fuzzy entropy
    Rupak Chakraborty
    Rama Sushil
    M. L. Garg
    Multimedia Tools and Applications, 2019, 78 : 34027 - 34063
  • [38] Automatic Signature Segmentation Using Hyper-spectral Imaging
    Butt, Umair Muneer
    Ahmad, Sheraz
    Shafait, Faisal
    Nansen, Christian
    Mian, Ajmal Saeed
    Malik, Muhammad Imran
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 19 - 24
  • [39] Hyper-spectral atmospheric sounding
    Smith, WL
    Zhou, DK
    Revercomb, HE
    Huang, HL
    Antonelli, P
    Mango, SA
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE VIII, 2004, 5235 : 389 - 396
  • [40] Hyper-spectral measurements using a compact SWIR camera
    Dayton, David
    Nolasco, Rudolph
    Myers, Michael
    Sena, John-Paul
    Oliver, Jeremy
    Even, Detlev
    Hill, Brian
    UNCONVENTIONAL IMAGING AND WAVEFRONT SENSING 2012, 2012, 8520