HYPER-SPECTRAL IMAGE CLASSIFICATION USING ADIABATIC QUANTUM COMPUTATION

被引:1
|
作者
Gardas, Bartlomiej [1 ]
Glomb, Przemyslaw [1 ]
Sadowski, Przemyslaw [1 ]
Puchala, Zbigniew [1 ]
Jalowiecki, Konrad [1 ]
Pawela, Lukasz [1 ]
Faucoz, Orphee [2 ]
Brunet, Pierre-Marie [2 ]
Gawron, Piotr [1 ,3 ]
van Waveren, Matthijs [4 ]
Savinaud, Mickael [4 ]
Pasero, Guillaume [4 ]
Defonte, Veronique [4 ]
机构
[1] PAS, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] CNES, 10 Ave Edouard Belin, F-31401 Toulouse, France
[3] PAS, Nicolaus Copernicus Astron Ctr, AstroCeNT, Rektorska 4, PL-00614 Warsaw, Poland
[4] CS GRP, 6 Rue Brindejonc Moulinais, F-31506 Toulouse, France
关键词
hyper-spectral image segmentation; energy-based models; quantum annealing;
D O I
10.1109/IGARSS52108.2023.10282125
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Supervised machine learning techniques are widely used for hyper-spectral images segmentation. A typical simple scheme of classification of such images probabilistically assigns a label to each individual pixel omitting information about pixel surroundings. In order to achieve better classification results for real world images one has to agree the local label obtained from the classifier with the classes of pixel neighborhood. A popular way to do it is through a probabilistic graphical model, where label distributions for individual pixels are mapped into a graph of neighborhood relations. One way to realize this approach is to use Ising models, where class probability is mapped to spin energy and class-class interaction is mapped to the spins coupling. By finding low energy states of such an Ising model we can perform post-processing of segmented images. In this work we present how this post-processing can be implemented using a quantum annealer.
引用
收藏
页码:620 / 623
页数:4
相关论文
共 50 条
  • [21] Prior important band hyper-spectral image compression
    Li, FP
    Shao, HM
    Ma, GR
    Qin, QQ
    Li, DR
    THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 709 - 712
  • [22] The Hyper-spectral Image Compression System Based on DSP
    Liu Qianwen
    Hu Bingliang
    2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 2, PROCEEDINGS,, 2009, : 171 - 174
  • [23] Texture classification algorithm of wood hyper-spectral image based on multi-fractal spectra
    Tang Yan-hui
    Zhao Peng
    Wang Cheng-kun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2019, 34 (12) : 1182 - 1190
  • [24] Hyper-spectral characteristics and classification of farmland soil in northeast of China
    Lu Yan-li
    Bai You-lu
    Yang Li-ping
    Wang Lei
    Wang Yi-lun
    Ni Lu
    Zhou Li-ping
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2015, 14 (12) : 2521 - 2528
  • [25] Composite Kernels for Support Vector Classification of Hyper-Spectral Data
    Kohram, M.
    Sap, M. N. M.
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 360 - 370
  • [26] Hyper-spectral characteristics and classification of farmland soil in northeast of China
    LU Yan-li
    BAI You-lu
    YANG Li-ping
    WANG Lei
    WANG Yi-lun
    NI Lu
    ZHOU Li-ping
    Journal of Integrative Agriculture, 2015, 14 (12) : 2521 - 2528
  • [27] HYPER-SPECTRAL IMAGE ANALYSIS WITH PARTIALLY-LATENT REGRESSION
    Deleforge, Antoine
    Forbes, Florence
    Horaud, Radu
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1572 - 1576
  • [28] Hyper-spectral image segmentation using an improved PSO aided with multilevel fuzzy entropy
    Chakraborty, Rupak
    Sushil, Rama
    Garg, M. L.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) : 34027 - 34063
  • [29] An Effective Feature Segmentation Algorithm for a Hyper-Spectral Facial Image
    Zhao, Yuefeng
    Wu, Mengmeng
    Zhang, Liren
    Wang, Jingjing
    Wei, Dongmei
    INFORMATION, 2018, 9 (10):
  • [30] A bounded distortion compression scheme for hyper-spectral image data
    Memon, ND
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1039 - 1041