Regularized selection indices for breeding value prediction using hyper-spectral image data

被引:0
|
作者
Lopez-Cruz, Marco [1 ]
Olson, Eric [1 ]
Rovere, Gabriel [2 ,3 ,4 ]
Crossa, Jose [6 ]
Dreisigacker, Susanne [6 ]
Mondal, Suchismita [6 ]
Singh, Ravi [6 ]
de los Campos, Gustavo [3 ,4 ,5 ]
机构
[1] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Anim Sci, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Epidemiol & Biostat, E Lansing, MI 48824 USA
[4] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[6] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City, DF, Mexico
关键词
NEAR-INFRARED SPECTROSCOPY; REFLECTANCE SPECTRA; VEGETATION INDEXES; MILK COMPONENTS; CHLOROPHYLL; CANOPY; MODELS; WHEAT;
D O I
10.1038/s41598-020-65011-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes per unit being monitored. These data can be used to breed for economically and environmentally relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in genetic analyses and in breeding schemes poses important statistical and computational challenges. To address this problem, we developed regularized selection indices; the methodology integrates techniques commonly used in high-dimensional phenotypic regressions (including penalization and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from CIMMYT's (International Maize and Wheat Improvement Center) wheat breeding program we show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely generated in agriculture; the methodology can also be used to conduct genetic studies using high-dimensional phenotypes that are often collected in humans and model organisms including body images and whole-genome gene expression profiles.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Regularized selection indices for breeding value prediction using hyper-spectral image data
    Marco Lopez-Cruz
    Eric Olson
    Gabriel Rovere
    Jose Crossa
    Susanne Dreisigacker
    Suchismita Mondal
    Ravi Singh
    Gustavo de los Campos
    [J]. Scientific Reports, 10
  • [2] Cloud Model Based SaDE for Feature Selection in Hyper-spectral Image Data
    Ku, J. H.
    Cai, Z. H.
    Yang, X. Y.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND INFORMATION TECHNOLOGY (SEIT2015), 2016, : 241 - 246
  • [3] Early prediction of antioxidant enzyme value of rice blast based on hyper-spectral image
    Yang, Yan
    He, Yong
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (20): : 135 - 141
  • [4] ROHSA: Regularized Optimization for Hyper-Spectral Analysis
    Marchal, Antoine
    Miville-Deschênes, Marc-Antoine
    Orieux, François
    Gac, Nicolas
    Soussen, Charles
    Lesot, Marie-Jeanne
    D'Allonnes, Adrien Revault
    Salomé, Quentin
    [J]. Astronomy and Astrophysics, 2019, 626
  • [5] Hyper-spectral Image Denoising Using Sparse Representation
    Chilkewar, Vijay
    Vyas, Vibha
    [J]. ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 401 - 410
  • [6] Tracking in hyper-spectral data
    Streit, RL
    Graham, ML
    Walsh, MJ
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 852 - 859
  • [7] A bounded distortion compression scheme for hyper-spectral image data
    Memon, ND
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1039 - 1041
  • [8] Hyper-Spectral Image Segmentation Using Spectral Clustering With Covariance Descriptors
    Kursun, Olcay
    Karabiber, Fethullah
    Koc, Cemalettin
    Bal, Abdullah
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS VII, 2009, 7245
  • [9] HYPER-SPECTRAL IMAGE CLASSIFICATION USING ADIABATIC QUANTUM COMPUTATION
    Gardas, Bartlomiej
    Glomb, Przemyslaw
    Sadowski, Przemyslaw
    Puchala, Zbigniew
    Jalowiecki, Konrad
    Pawela, Lukasz
    Faucoz, Orphee
    Brunet, Pierre-Marie
    Gawron, Piotr
    van Waveren, Matthijs
    Savinaud, Mickael
    Pasero, Guillaume
    Defonte, Veronique
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 620 - 623
  • [10] Hyper-spectral image classification using spatial-spectral manifold reconstruction
    Huang, Hong
    Chen, Mei-Li
    Duan, Yu-Le
    Shi, Guang-Yao
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (07): : 1827 - 1836