HYPER-SPECTRAL IMAGE CLASSIFICATION USING ADIABATIC QUANTUM COMPUTATION

被引:1
|
作者
Gardas, Bartlomiej [1 ]
Glomb, Przemyslaw [1 ]
Sadowski, Przemyslaw [1 ]
Puchala, Zbigniew [1 ]
Jalowiecki, Konrad [1 ]
Pawela, Lukasz [1 ]
Faucoz, Orphee [2 ]
Brunet, Pierre-Marie [2 ]
Gawron, Piotr [1 ,3 ]
van Waveren, Matthijs [4 ]
Savinaud, Mickael [4 ]
Pasero, Guillaume [4 ]
Defonte, Veronique [4 ]
机构
[1] PAS, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] CNES, 10 Ave Edouard Belin, F-31401 Toulouse, France
[3] PAS, Nicolaus Copernicus Astron Ctr, AstroCeNT, Rektorska 4, PL-00614 Warsaw, Poland
[4] CS GRP, 6 Rue Brindejonc Moulinais, F-31506 Toulouse, France
关键词
hyper-spectral image segmentation; energy-based models; quantum annealing;
D O I
10.1109/IGARSS52108.2023.10282125
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Supervised machine learning techniques are widely used for hyper-spectral images segmentation. A typical simple scheme of classification of such images probabilistically assigns a label to each individual pixel omitting information about pixel surroundings. In order to achieve better classification results for real world images one has to agree the local label obtained from the classifier with the classes of pixel neighborhood. A popular way to do it is through a probabilistic graphical model, where label distributions for individual pixels are mapped into a graph of neighborhood relations. One way to realize this approach is to use Ising models, where class probability is mapped to spin energy and class-class interaction is mapped to the spins coupling. By finding low energy states of such an Ising model we can perform post-processing of segmented images. In this work we present how this post-processing can be implemented using a quantum annealer.
引用
收藏
页码:620 / 623
页数:4
相关论文
共 50 条
  • [1] HSEG and PCA for Hyper-spectral Image Classification
    Shabna, A.
    Ganesan, R.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 42 - 47
  • [2] Hyper-spectral image classification using spatial-spectral manifold reconstruction
    Huang H.
    Chen M.-L.
    Duan Y.-L.
    Shi G.-Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (07): : 1827 - 1836
  • [3] The election of Spectrum bands in Hyper-spectral image classification
    Yu, Yi
    Li, Yi-Fan
    Li, Jun-Bao
    Pan, Jeng-Shyang
    Zheng, Wei-Min
    ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL 2, 2017, 64 : 3 - 10
  • [4] CLASS SPECIFIC CODERS FOR HYPER-SPECTRAL IMAGE CLASSIFICATION
    Sharma, Sanatan
    Goel, Akashdeep
    Gune, Omkar
    Banerjee, Biplab
    Chaudhuri, Subhasis
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3304 - 3308
  • [5] STATISTICAL PERSPECTIVE OF SOM AND CSOM FOR HYPER-SPECTRAL IMAGE CLASSIFICATION
    Mallapragada, Srivatsa
    Hung, Chih-Cheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 48 - 51
  • [6] Hyper-spectral Image Denoising Using Sparse Representation
    Chilkewar, Vijay
    Vyas, Vibha
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 401 - 410
  • [7] Hyper-Spectral Image Segmentation Using Spectral Clustering With Covariance Descriptors
    Kursun, Olcay
    Karabiber, Fethullah
    Koc, Cemalettin
    Bal, Abdullah
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS VII, 2009, 7245
  • [8] Semi-Supervised Techniques Based Hyper-spectral Image Classification: A Survey
    Sawant, Shrutika S.
    Prabukumar, M.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [9] Segmentation and classification of hyper-spectral skin data
    Kazianka, Hannes
    Leitner, Raimund
    Pilz, Juergen
    DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 245 - +
  • [10] HyperSpectraNet: Leveraging Spectral Attention for Hyper-Spectral Image Reconstruction
    Soni, Pawan
    Shekar, Pavan C.
    Kanhangad, Vivek
    2024 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, SPCOM 2024, 2024,