Algorithms of the Möbius function by random forests and neural networks

被引:1
|
作者
Qin, Huan [1 ]
Ye, Yangbo [2 ]
机构
[1] San Diego State Univ Imperial Valley, 720 Heber Ave, Calexico, CA 92231 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
The Mobius function; The algorithm of the Mobius function; Machine learning; Random forests; Neural networks;
D O I
10.1186/s40537-024-00889-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Mobius function mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} is known for containing limited information on the prime factorization of n. Its known algorithms, however, are all based on factorization and hence are exponentially slow on logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n$$\end{document}. Consequently, a faster algorithm of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} could potentially lead to a fast algorithm of prime factorization which in turn would throw doubt upon the security of most public-key cryptosystems. This research introduces novel approaches to compute mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} using random forests and neural networks, harnessing the additive properties of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document}. The machine learning models are trained on a substantial dataset with 317,284 observations (80%), comprising five feature variables, including values of n within the range of 4x109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>9$$\end{document}. We implement the Random Forest with Random Inputs (RFRI) and Feedforward Neural Network (FNN) architectures. The RFRI model achieves a predictive accuracy of 0.9493, a recall of 0.5865, and a precision of 0.6626. On the other hand, the FNN model attains a predictive accuracy of 0.7871, a recall of 0.9477, and a precision of 0.2784. These results strongly support the effectiveness and validity of the proposed algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Algorithms of the Möbius function by random forests and neural networks
    Huan Qin
    Yangbo Ye
    Journal of Big Data, 11
  • [2] Neural networks meet random forests
    Qiu, Rui
    Xu, Shuntuo
    Yu, Zhou
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (05) : 1435 - 1454
  • [3] Disjointness of the Möbius Transformation and Möbius Function
    El Houcein El Abdalaoui
    Igor E. Shparlinski
    Research in the Mathematical Sciences, 2019, 6
  • [4] A modified Möbius μ-function
    Steuding R.
    Steuding J.
    Tóth L.
    Rendiconti del Circolo Matematico di Palermo, 2011, 60 (1-2) : 13 - 21
  • [5] The modified möbius function
    Brown, P.G. (peter@unsw.edu.au), 1600, World Scientific and Engineering Academy and Society, aAg. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (12):
  • [6] A Combinatorial Method to Introduce Mbius Inversion Formula and Mbius Function
    陈难先
    ChineseScienceBulletin, 1993, (01) : 27 - 31
  • [7] The Möbius function on Abelian semigroups
    E. A. Gorin
    Functional Analysis and Its Applications, 2011, 45 : 73 - 76
  • [8] The Möbius function of a composition poset
    Bruce E. Sagan
    Vincent Vatter
    Journal of Algebraic Combinatorics, 2006, 24 : 117 - 136
  • [9] Elementary remarks on Möbius’ function
    Michel Balazard
    Proceedings of the Steklov Institute of Mathematics, 2012, 276 : 33 - 39
  • [10] Casting Random Forests as Artificial Neural Networks (and Profiting from It)
    Welbl, Johannes
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 765 - 774