Algorithms of the Möbius function by random forests and neural networks

被引:1
|
作者
Qin, Huan [1 ]
Ye, Yangbo [2 ]
机构
[1] San Diego State Univ Imperial Valley, 720 Heber Ave, Calexico, CA 92231 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
The Mobius function; The algorithm of the Mobius function; Machine learning; Random forests; Neural networks;
D O I
10.1186/s40537-024-00889-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Mobius function mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} is known for containing limited information on the prime factorization of n. Its known algorithms, however, are all based on factorization and hence are exponentially slow on logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n$$\end{document}. Consequently, a faster algorithm of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} could potentially lead to a fast algorithm of prime factorization which in turn would throw doubt upon the security of most public-key cryptosystems. This research introduces novel approaches to compute mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} using random forests and neural networks, harnessing the additive properties of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document}. The machine learning models are trained on a substantial dataset with 317,284 observations (80%), comprising five feature variables, including values of n within the range of 4x109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>9$$\end{document}. We implement the Random Forest with Random Inputs (RFRI) and Feedforward Neural Network (FNN) architectures. The RFRI model achieves a predictive accuracy of 0.9493, a recall of 0.5865, and a precision of 0.6626. On the other hand, the FNN model attains a predictive accuracy of 0.7871, a recall of 0.9477, and a precision of 0.2784. These results strongly support the effectiveness and validity of the proposed algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification
    Li, Dong-Dong
    Chen, Ting
    Ling, You-Liang
    Jiang, Yongan
    Li, Qiu-Gen
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [32] A Short Derivation of the Möbius Function for the Bruhat Order
    John R. Stembridge
    Journal of Algebraic Combinatorics, 2007, 25 : 141 - 148
  • [33] An Explicit Derivation of the Möbius Function for Bruhat Order
    Brant C. Jones
    Order, 2009, 26 : 319 - 330
  • [34] On partial sums of a spectral analogue of the Möbius function
    KALYAN CHAKRABORTY
    MAKOTO MINAMIDE
    Proceedings - Mathematical Sciences, 2013, 123 : 193 - 201
  • [35] Möbius function and characteristic monomials for combinatorial enumeration
    Shinsaku Fujita
    Theoretical Chemistry Accounts, 1999, 101 : 409 - 420
  • [36] The partition function p(n) in terms of the classical Möbius function
    Mircea Merca
    Maxie D. Schmidt
    The Ramanujan Journal, 2019, 49 : 87 - 96
  • [37] Comparison of Second Order Algorithms for Function Approximation with Neural Networks
    Boutalbi, E.
    Gougam, L. Ait
    Mekideche-Chafa, F.
    ACTA PHYSICA POLONICA A, 2015, 128 (2B) : B271 - B272
  • [38] Random vibration analysis with radial basis function neural networks
    Wang, Xi
    Jiang, Jun
    Hong, Ling
    Sun, Jian-Qiao
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (05) : 1385 - 1394
  • [39] Function approximation by random neural networks with a bounded number of layers
    Gelenbe, E
    Mao, ZH
    Li, YD
    ESM 2003: 17TH EUROPEAN SIMULATION MULTICONFERENCE: FOUNDATIONS FOR SUCCESSFUL MODELLING & SIMULATION, 2003, : 5 - 24
  • [40] Random vibration analysis with radial basis function neural networks
    Xi Wang
    Jun Jiang
    Ling Hong
    Jian-Qiao Sun
    International Journal of Dynamics and Control, 2022, 10 : 1385 - 1394