Algorithms of the Möbius function by random forests and neural networks

被引:1
|
作者
Qin, Huan [1 ]
Ye, Yangbo [2 ]
机构
[1] San Diego State Univ Imperial Valley, 720 Heber Ave, Calexico, CA 92231 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
The Mobius function; The algorithm of the Mobius function; Machine learning; Random forests; Neural networks;
D O I
10.1186/s40537-024-00889-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Mobius function mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} is known for containing limited information on the prime factorization of n. Its known algorithms, however, are all based on factorization and hence are exponentially slow on logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n$$\end{document}. Consequently, a faster algorithm of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} could potentially lead to a fast algorithm of prime factorization which in turn would throw doubt upon the security of most public-key cryptosystems. This research introduces novel approaches to compute mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document} using random forests and neural networks, harnessing the additive properties of mu(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (n)$$\end{document}. The machine learning models are trained on a substantial dataset with 317,284 observations (80%), comprising five feature variables, including values of n within the range of 4x109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>9$$\end{document}. We implement the Random Forest with Random Inputs (RFRI) and Feedforward Neural Network (FNN) architectures. The RFRI model achieves a predictive accuracy of 0.9493, a recall of 0.5865, and a precision of 0.6626. On the other hand, the FNN model attains a predictive accuracy of 0.7871, a recall of 0.9477, and a precision of 0.2784. These results strongly support the effectiveness and validity of the proposed algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Levenberg-Marquardt Training Algorithms for Random Neural Networks
    Basterrech, Sebastian
    Mohammed, Samir
    Rubino, Gerardo
    Soliman, Mostafa
    COMPUTER JOURNAL, 2011, 54 (01): : 125 - 135
  • [22] On the M?bius function in all short intervals
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (04) : 1207 - 1225
  • [23] Multiplicative Functions Resembling the M?bius Function
    Qing Yang LIU
    Acta Mathematica Sinica,English Series, 2023, (12) : 2316 - 2328
  • [24] The Möbius function and continuous extensions of rotations
    J. Kułaga-Przymus
    M. Lemańczyk
    Monatshefte für Mathematik, 2015, 178 : 553 - 582
  • [25] Multiplicative Functions Resembling the Möbius Function
    Qing Yang Liu
    Acta Mathematica Sinica, English Series, 2023, 39 : 2316 - 2328
  • [26] Random Forests and Networks Analysis
    Avena, Luca
    Castell, Fabienne
    Gaudilliere, Alexandre
    Melot, Clothilde
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (3-4) : 985 - 1027
  • [27] Random Forests and Networks Analysis
    Luca Avena
    Fabienne Castell
    Alexandre Gaudillière
    Clothilde Mélot
    Journal of Statistical Physics, 2018, 173 : 985 - 1027
  • [28] Hamiltonian numbers of Möbius double loop networks
    Gerard J. Chang
    Ting-Pang Chang
    Li-Da Tong
    Journal of Combinatorial Optimization, 2012, 23 : 462 - 470
  • [29] Prediction of large magnetic moment materials with graph neural networks and random forests
    Kaba, Sekou-Oumar
    Groleau-Pare, Benjamin
    Gauthier, Marc-Antoine
    Tremblay, A. -m. s.
    Verret, Simon
    Gauvin-Ndiaye, Chloe
    PHYSICAL REVIEW MATERIALS, 2023, 7 (04)
  • [30] Comparison of the Representational Power of Random Forests, Binary Decision Diagrams, and Neural Networks
    Kumano, So
    Akutsu, Tatsuya
    NEURAL COMPUTATION, 2022, 34 (04) : 1019 - 1044