Disjointness of the Möbius Transformation and Möbius Function

被引:0
|
作者
El Houcein El Abdalaoui
Igor E. Shparlinski
机构
[1] Université de Rouen Normandie,Laboratoire de Mathématiques Raphaël Salem
[2] University of New South Wales,School of Mathematics and Statistics
来源
关键词
Möbius function; Möbius transformation; Möbius disjointness; Exponential sums over primes; 11L07; 11N60; 11T23; 37P05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the distribution of the sequence of elements of the discrete dynamical system generated by the Möbius transformation x↦(ax+b)/(cx+d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto (ax + b)/(cx + d)$$\end{document} over a finite field of p elements. Motivated by a recent conjecture of P. Sarnak, we obtain nontrivial estimates of exponential sums with such sequences that imply that trajectories of this dynamical system are disjoined with the Möbius function.
引用
收藏
相关论文
共 50 条