On Mbius Form and Mbius Isoparametric Hypersurfaces

被引:0
|
作者
Ze Jun HUDepartment of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Mbius isoparametric hypersurface; Mbius second fundamental form; Mbius metric; Mbius form; parallel Mbius form;
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
An umbilic-free hypersurface in the unit sphere is called Mbius isoparametric if it satisfiestwo conditions, namely, it has vanishing Mbius form and has constant Mbius principal curvatures.In this paper, under the condition of having constant Mbius principal curvatures, we show that thehypersurfaee is of vanishing Mbius form if and only if its Mbius form is parallel with respect to theLevi-Civita connection of its Mbius metric. Moreover, typical examples are constructed to show thatthe condition of having constant Mbius principal curvatures and that of having vanishing Mbius formare independent of each other.
引用
收藏
页码:2077 / 2092
页数:16
相关论文
共 50 条
  • [1] On Möbius form and Möbius isoparametric hypersurfaces
    Ze Jun Hu
    Xiao Li Tian
    [J]. Acta Mathematica Sinica, English Series, 2009, 25 : 2077 - 2092
  • [2] Möbius Isoparametric Hypersurfaces in Sn+1 with Two Distinct Principal Curvatures
    Hai Zhong Li*
    Hui Li Liu**
    Chang Ping Wang***
    Guo Song Zhao****
    [J]. Acta Mathematica Sinica, 2002, 18 : 437 - 446
  • [3] Spacelike M?bius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin LIN
    Ying L
    Chang Ping WANG
    [J]. Acta Mathematica Sinica., 2019, 35 (04) - 536
  • [4] Spacelike M?bius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin LIN
    Ying Lü
    Chang Ping WANG
    [J]. Acta Mathematica Sinica,English Series, 2019, (04) : 519 - 536
  • [5] Spacelike Möbius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin Lin
    Ying Lü
    Chang Ping Wang
    [J]. Acta Mathematica Sinica, English Series, 2019, 35 : 519 - 536
  • [6] Disjointness of the Möbius Transformation and Möbius Function
    El Houcein El Abdalaoui
    Igor E. Shparlinski
    [J]. Research in the Mathematical Sciences, 2019, 6
  • [8] Möbius
    J. W. Alden
    [J]. Nature, 2014, 515 : 304 - 304
  • [9] Classification of hypersurfaces with parallel Mbius second fundamental form in Sn+1
    HU Zejun
    LI Haizhong Department of Mathematics
    [J]. Science China Mathematics, 2004, (03) : 417 - 430
  • [10] Classification of hypersurfaces with parallel Möbius second fundamental form in Sn+1
    Zejun Hu
    Haizhong Li
    [J]. Science in China Series A: Mathematics, 2004, 47 (3): : 417 - 430