Spacelike M?bius Hypersurfaces in Four Dimensional Lorentzian Space Form

被引:2
|
作者
Yan Bin LIN [1 ]
Ying L [2 ]
Chang Ping WANG [1 ]
机构
[1] College of Mathematics and Informatics, Fujian Normal University
[2] School of Mathematical Sciences, Xiamen
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {Ei}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form.
引用
收藏
页码:519 / 536
页数:18
相关论文
共 50 条
  • [1] Spacelike Möbius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin Lin
    Ying Lü
    Chang Ping Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 519 - 536
  • [2] Spacelike M?bius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Yan Bin LIN
    Ying Lü
    Chang Ping WANG
    Acta Mathematica Sinica,English Series, 2019, (04) : 519 - 536
  • [3] Spacelike Mobius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Lin, Yan Bin
    Lu, Ying
    Wang, Chang Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (04) : 519 - 536
  • [4] Complete spacelike CMC hypersurfaces in a Lorentzian space form
    Yang, Biaogui
    Liu, Ximin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 513 - 525
  • [5] On the behavior at infinity of complete spacelike hypersurfaces in a Lorentzian space form
    Marco A. L. Velásquez
    Henrique F. de Lima
    Ary V. F. Leite
    Journal of Geometry, 2024, 115 (3)
  • [6] On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form
    Aquino, Cicero P.
    Batista, Mamba
    de Lima, Henrique F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 228 - 236
  • [7] Spacelike Dupin hypersurfaces in Lorentzian space forms
    Li, Tongzhu
    Nie, Changxiong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 463 - 480
  • [8] ON THE FIRST EIGENVALUE OF SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE
    Wu Bing-Ye
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 233 - 238
  • [9] On Mbius Form and Mbius Isoparametric Hypersurfaces
    Ze Jun HUDepartment of Mathematics
    Acta Mathematica Sinica,English Series, 2009, 25 (12) : 2077 - 2092
  • [10] On Möbius form and Möbius isoparametric hypersurfaces
    Ze Jun Hu
    Xiao Li Tian
    Acta Mathematica Sinica, English Series, 2009, 25 : 2077 - 2092