SBSS: Stacking-Based Semantic Segmentation Framework for Very High-Resolution Remote Sensing Image

被引:15
|
作者
Cai, Yuanzhi [1 ,2 ]
Fan, Lei [1 ]
Fang, Yuan [1 ,2 ]
机构
[1] Xian Jiaotong Liverpool Univ, Design Sch, Dept Civil Engn, Suzhou 215000, Peoples R China
[2] Univ Liverpool, Sch Engn, Liverpool L69 3BX, England
关键词
Error correction; Feature extraction; Semantic segmentation; Spatial resolution; Decoding; Bagging; Task analysis; Convolutional neural network; deep learning; ensemble learning; semantic segmentation; stacking; CLASSIFICATION;
D O I
10.1109/TGRS.2023.3234549
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation of very high-resolution (VHR) remote sensing images is a fundamental task for many applications. However, large variations in the scales of objects in those VHR images pose a challenge for performing accurate semantic segmentation. Existing semantic segmentation networks are able to analyze an input image at up to four resizing scales, but this may be insufficient given the diversity of object scales. Therefore, multiscale (MS) test-time data augmentation is often used in practice to obtain more accurate segmentation results, which makes equal use of the segmentation results obtained at the different resizing scales. However, it was found in this study that different classes of objects had their preferred resizing scale for more accurate semantic segmentation. Based on this behavior, a stacking-based semantic segmentation (SBSS) framework is proposed to improve the segmentation results by learning this behavior, which contains a learnable error correction module (ECM) for segmentation result fusion and an error correction scheme (ECS) for computational complexity control. Two ECS, i.e., ECS-MS and ECS-single-scale (SS), are proposed and investigated in this study. The floating-point operations (Flops) required for ECS-MS and ECS-SS are similar to the commonly used MS test and the SS test, respectively. Extensive experiments on four datasets (i.e., Cityscapes, UAVid, LoveDA, and Potsdam) show that SBSS is an effective and flexible framework. It achieved higher accuracy than MS when using ECS-MS, and similar accuracy as SS with a quarter of the memory footprint when using ECS-SS.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Irregular adaptive refinement network for semantic segmentation of high-resolution remote sensing images
    Deng, Lulu
    Zhang, Changlun
    He, Qiang
    Wang, Hengyou
    Huo, Lianzhi
    Mu, Haibing
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (5-6): : 11235 - 11246
  • [42] AANet: Adaptive Attention Networks for Semantic Segmentation of High-Resolution Remote Sensing Imagery
    Chen, Yan
    Zhang, Qianchuan
    Wang, Xiaofeng
    Dong, Quan
    Kang, Menglei
    Jiang, Wenxiang
    Wang, Mengyuan
    Xu, Lixiang
    Zhang, Chen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14640 - 14655
  • [43] High-resolution remote sensing images semantic segmentation using improved UNet and SegNet
    Wang, Xin
    Jing, Shihan
    Dai, Huifeng
    Shi, Aiye
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [44] SEGMENTATION METHOD OF HIGH-RESOLUTION REMOTE SENSING IMAGE FOR FAST TARGET RECOGNITION
    Li, Chenming
    Gao, Hongmin
    Yang, Yao
    Qu, Xiaoyu
    Yuan, Wenjing
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2019, 34 (03): : 216 - 224
  • [45] HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote Sensing Images
    Xu, Zhiyong
    Zhang, Weicun
    Zhang, Tianxiang
    Li, Jiangyun
    REMOTE SENSING, 2021, 13 (01) : 1 - 23
  • [46] Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Tao, Jinhua
    Chen, Liangfu
    Niu, Xuerui
    Zhang, Yumeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [47] Fuzzy neighbourhood neural network for high-resolution remote sensing image segmentation
    Qu, Tingting
    Xu, Jindong
    Chong, Qianpeng
    Liu, Zhaowei
    Yan, Weiqing
    Wang, Xuan
    Song, Yongchao
    Ni, Mengying
    EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01)
  • [48] Cascaded CNN and global-local attention transformer network-based semantic segmentation for high-resolution remote sensing image
    Liu, Xiaohui
    Zhang, Lei
    Wang, Rui
    Li, Xiaoyu
    Xu, Jiyang
    Lu, Xiaochen
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)
  • [49] Cascaded CNN and global-local attention transformer network-based semantic segmentation for high-resolution remote sensing image
    Liu, Xiaohui
    Zhang, Lei
    Wang, Rui
    Li, Xiaoyu
    Xu, Jiyang
    Lu, Xiaochen
    Journal of Applied Remote Sensing, 2024, 18 (03)
  • [50] Semantic Descriptions of High-Resolution Remote Sensing Images
    Wang, Binqiang
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1274 - 1278