Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images

被引:1
|
作者
Zeng, Qiaolin [1 ]
Zhou, Jingxiang [1 ]
Tao, Jinhua [2 ]
Chen, Liangfu [2 ]
Niu, Xuerui [1 ]
Zhang, Yumeng [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Henan Open Univ, Informat Technol & Data Management Ctr, Zhengzhou 450008, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuses; Semantic segmentation; Computational modeling; Semantics; Transformers; Decoding; Sensors; Attention mechanism; remote sensing images; semantic segmentation; transformer; FUSION;
D O I
10.1109/TGRS.2024.3393489
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation of high-resolution remote sensing images (HRSIs) is a challenging task because objects in HRSIs usually have great scale variance and appearance variance. Although deep convolutional neural networks (DCNNs) have been widely applied in the semantic segmentation of HRSIs, they have inherent limitations in capturing global context. Attention mechanisms and transformer can effectively model long-range dependencies, but they often result in high computational costs when being applied to process HRSIs. In this article, an encoder-decoder network (MSGCNet) is proposed to fully and efficiently model multiscale context and long-range dependencies of HRSIs. Specifically, the multiscale interaction (MSI) module employs an efficient cross-attention to facilitate interaction among multiscale features of the encoder, which bridges the semantic gap between high- and low-level features and introduces more scale information to the network. In order to efficiently model long-range dependencies in both spatial and channel dimensions, the transformer-based decoder block (TBDB) implements window-based efficient multihead self-attention (W-EMSA) and enables interactions cross windows. Furthermore, to further integrate the global context generated by TBDB, the scale-aware fusion (SAF) module is proposed to deeply supervise the decoder, which iteratively fuses hierarchical features through spatial attention. As demonstrated by both quantitative and qualitative experimental results on two publicly available datasets, the proposed MSGCNet exhibits superior performance compared to currently popular methods. The code will be available at http://github.com/JingxiangZhou/MSGCNet.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [2] HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote Sensing Images
    Xu, Zhiyong
    Zhang, Weicun
    Zhang, Tianxiang
    Li, Jiangyun
    [J]. REMOTE SENSING, 2021, 13 (01) : 1 - 23
  • [3] Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    Ma, Bifang
    Chang, Chih-Yung
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (04) : 3745 - 3755
  • [4] HCANet: A Hierarchical Context Aggregation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Bai, Haiwei
    Cheng, Jian
    Huang, Xia
    Liu, Siyu
    Deng, Changjian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Lv, Liang
    Guo, Yiyou
    Bao, Tengfei
    Fu, Chenqin
    Huo, Hong
    Fang, Tao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2172 - 2176
  • [7] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [8] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    [J]. REMOTE SENSING, 2023, 15 (09)
  • [9] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Context-Driven Feature-Focusing Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Tan, Xiaowei
    Xiao, Zhifeng
    Zhang, Yanru
    Wang, Zhenjiang
    Qi, Xiaole
    Li, Deren
    [J]. REMOTE SENSING, 2023, 15 (05)