SBSS: Stacking-Based Semantic Segmentation Framework for Very High-Resolution Remote Sensing Image

被引:15
|
作者
Cai, Yuanzhi [1 ,2 ]
Fan, Lei [1 ]
Fang, Yuan [1 ,2 ]
机构
[1] Xian Jiaotong Liverpool Univ, Design Sch, Dept Civil Engn, Suzhou 215000, Peoples R China
[2] Univ Liverpool, Sch Engn, Liverpool L69 3BX, England
关键词
Error correction; Feature extraction; Semantic segmentation; Spatial resolution; Decoding; Bagging; Task analysis; Convolutional neural network; deep learning; ensemble learning; semantic segmentation; stacking; CLASSIFICATION;
D O I
10.1109/TGRS.2023.3234549
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation of very high-resolution (VHR) remote sensing images is a fundamental task for many applications. However, large variations in the scales of objects in those VHR images pose a challenge for performing accurate semantic segmentation. Existing semantic segmentation networks are able to analyze an input image at up to four resizing scales, but this may be insufficient given the diversity of object scales. Therefore, multiscale (MS) test-time data augmentation is often used in practice to obtain more accurate segmentation results, which makes equal use of the segmentation results obtained at the different resizing scales. However, it was found in this study that different classes of objects had their preferred resizing scale for more accurate semantic segmentation. Based on this behavior, a stacking-based semantic segmentation (SBSS) framework is proposed to improve the segmentation results by learning this behavior, which contains a learnable error correction module (ECM) for segmentation result fusion and an error correction scheme (ECS) for computational complexity control. Two ECS, i.e., ECS-MS and ECS-single-scale (SS), are proposed and investigated in this study. The floating-point operations (Flops) required for ECS-MS and ECS-SS are similar to the commonly used MS test and the SS test, respectively. Extensive experiments on four datasets (i.e., Cityscapes, UAVid, LoveDA, and Potsdam) show that SBSS is an effective and flexible framework. It achieved higher accuracy than MS when using ECS-MS, and similar accuracy as SS with a quarter of the memory footprint when using ECS-SS.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Chang, Zhanyuan
    Xu, Mingyu
    Wei, Yuwen
    Lian, Jie
    Zhang, Chongming
    Li, Chuanjiang
    SENSORS, 2024, 24 (20)
  • [22] Dual decoupling semantic segmentation model for high-resolution remote sensing images
    Liu S.
    Li X.
    Yu M.
    Xing G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 638 - 647
  • [23] Advancing high-resolution remote sensing: a compact and powerful approach to semantic segmentation
    Zhang, Hua
    Jiang, Zhengang
    Xu, Jun
    Pan, Xin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (18) : 6860 - 6883
  • [24] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [25] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [27] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [28] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [29] A Novel Object-Based Deep Learning Framework for Semantic Segmentation of Very High-Resolution Remote Sensing Data: Comparison with Convolutional and Fully Convolutional Networks
    Papadomanolaki, Maria
    Vakalopoulou, Maria
    Karantzalos, Konstantinos
    REMOTE SENSING, 2019, 11 (06)
  • [30] Incorporating DeepLabv3+and object-based image analysis for semantic segmentation of very high resolution remote sensing images
    Du, Shouji
    Du, Shihong
    Liu, Bo
    Zhang, Xiuyuan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (03) : 357 - 378