Linearized Transformed L1 Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schr?dinger Equations

被引:22
|
作者
Yuan, Wanqiu [1 ]
Li, Dongfang [1 ,2 ]
Zhang, Chengjian [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2023年 / 16卷 / 02期
基金
中国国家自然科学基金;
关键词
Optimal error estimates; time fractional Schr?dinger equations; transformed L1 scheme; discrete fractional Gr?nwall inequality; FINITE-ELEMENT-METHOD; SCHRODINGER-EQUATION; ERROR ANALYSIS; SCHEMES; MESHES;
D O I
10.4208/nmtma.OA-2022-0087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linearized transformed L1 Galerkin finite element method (FEM) is pre-sented for numerically solving the multi-dimensional time fractional Schrodinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Gronwall inequality, the corresponding Sobolev embedding theorems and some in-verse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical exam-ples are presented to confirm the theoretical results.
引用
收藏
页码:348 / 369
页数:22
相关论文
共 50 条
  • [21] A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
    Guoyu Zhang
    Chengming Huang
    Meng Li
    The European Physical Journal Plus, 133
  • [22] A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schr?dinger equations
    Wang, Ying
    Mei, Liquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (12) : 2387 - 2410
  • [23] Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrödinger Equations
    Nakao Hayashi
    Pavel I. Naumkin
    Annales Henri Poincaré, 2017, 18 : 1025 - 1054
  • [24] Analytical treatments of the space–time fractional coupled nonlinear Schrödinger equations
    Mehrdad Lakestani
    Jalil Manafian
    Optical and Quantum Electronics, 2018, 50
  • [25] Local error estimate of L1 scheme on graded mesh for time fractional Schrödinger equation
    Ma, Jun
    Chen, Hu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3161 - 3174
  • [26] Approximate Analytical Solution of Two Coupled Time Fractional Nonlinear Schrödinger Equations
    Bakkyaraj T.
    Sahadevan R.
    International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 113 - 135
  • [27] Convergence analysis of an L1-continuous Galerkin method for nonlinear time-space fractional Schrodinger equations
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (07) : 1420 - 1437
  • [28] Unconditional Convergence of Conservative Spectral Galerkin Methods for the Coupled Fractional Nonlinear Klein-Gordon-Schrodinger Equations
    Hu, Dongdong
    Fu, Yayun
    Cai, Wenjun
    Wang, Yushun
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)
  • [29] ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRODINGER EQUATIONS
    Qin, Hongyu
    Wu, Fengyan
    Zhou, Boya
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1305 - 1324
  • [30] Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems
    Han, Yuxin
    Huang, Xin
    Gu, Wei
    Zheng, Bolong
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458