Linearized Transformed L1 Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schr?dinger Equations

被引:22
|
作者
Yuan, Wanqiu [1 ]
Li, Dongfang [1 ,2 ]
Zhang, Chengjian [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal error estimates; time fractional Schr?dinger equations; transformed L1 scheme; discrete fractional Gr?nwall inequality; FINITE-ELEMENT-METHOD; SCHRODINGER-EQUATION; ERROR ANALYSIS; SCHEMES; MESHES;
D O I
10.4208/nmtma.OA-2022-0087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linearized transformed L1 Galerkin finite element method (FEM) is pre-sented for numerically solving the multi-dimensional time fractional Schrodinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Gronwall inequality, the corresponding Sobolev embedding theorems and some in-verse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical exam-ples are presented to confirm the theoretical results.
引用
收藏
页码:348 / 369
页数:22
相关论文
共 50 条
  • [41] Diverse optical soliton solutions of the fractional coupled (2 + 1)-dimensional nonlinear Schrödinger equations
    Md. Tarikul Islam
    Md. Ali Akbar
    Hijaz Ahmad
    Optical and Quantum Electronics, 2022, 54
  • [42] Optimal Convergence Rates in Time-Fractional Discretisations: the L1, L1 and Alikhanov Schemes
    Zhou, Yongtao
    Stynes, Martin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) : 503 - 520
  • [43] Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrodinger equations with Caputo derivatives
    Li, Meng
    Wei, Yifan
    Niu, Binqian
    Zhao, Yong-Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 416
  • [44] A Spatially Sixth-Order Hybrid L1-CCD Method for Solving Time Fractional Schrödinger Equations
    Chun-Hua Zhang
    Jun-Wei Jin
    Hai-Wei Sun
    Qin Sheng
    Applications of Mathematics, 2021, 66 : 213 - 232
  • [45] Weak convergence rates for stochastic evolution equations and applications to nonlinear stochastic wave, HJMM, stochastic Schrödinger and linearized stochastic Korteweg–de Vries equations
    Philipp Harms
    Marvin S. Müller
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [46] Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction-Subdiffusion Equations
    Li, Dongfang
    Zhang, Jiwei
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 848 - 866
  • [47] Lie symmetries, exact solutions and conservation laws of time fractional coupled (2+1)-dimensional nonlinear Schrödinger equations
    Yu, Jicheng
    Feng, Yuqiang
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024,
  • [48] Numerical Analysis of the Nonuniform Fast L1 Formula for Nonlinear Time–Space Fractional Parabolic Equations
    Zhiyong Xing
    Liping Wen
    Journal of Scientific Computing, 2023, 95
  • [49] Collocation-based numerical simulation of multi-dimensional nonlinear time-fractional Schrödinger equations
    Huang, Rong
    Weng, Zhifeng
    Yuan, Jianhua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 183 : 214 - 233
  • [50] Two-grid methods for nonlinear time fractional diffusion equations by L 1-Galerkin FEM
    Li, Qingfeng
    Chen, Yanping
    Huang, Yunqing
    Wang, Yang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 436 - 451