Local error estimate of L1 scheme on graded mesh for time fractional Schrödinger equation

被引:1
|
作者
Ma, Jun [1 ]
Chen, Hu [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Time fractional Schr & ouml; dinger equation; L1; scheme; Local error estimate; Graded mesh;
D O I
10.1007/s12190-024-02091-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a time fractional Schr & ouml;dinger equation with Caputo fractional derivative of order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is considered, whose solution exhibits a weak singularity at initial time. We divide the solution into two parts: imaginary part and real part, then the discrete system is constructed by the five-point difference scheme in space together with the L1 approximation of Caputo derivative on graded mesh in time. We provide stability and local error analysis for the discrete scheme, which shows that one can attain the optimal convergence order 2-alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-\alpha $$\end{document} in positive time by selecting milder grading parameters. Numerical results are presented to verify the accuracy of the theoretical analysis.
引用
收藏
页码:3161 / 3174
页数:14
相关论文
共 50 条
  • [1] Local error estimate of L1 scheme for linearized time fractional KdV equation with weakly singular solutions
    Chen, Hu
    Chen, Mengyi
    Sun, Tao
    Tang, Yifa
    APPLIED NUMERICAL MATHEMATICS, 2022, 179 : 183 - 190
  • [2] L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity
    Chen, Hu
    Hu, Xiaohan
    Ren, Jincheng
    Sun, Tao
    Tang, Yifa
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)
  • [3] On the stability preserving of L1 scheme to nonlinear time-fractional Schrödinger delay equations
    Yao, Zichen
    Yang, Zhanwen
    Cheng, Lixin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 209 - 220
  • [4] Solving Time Fractional Schrödinger Equation in the Sense of Local Fractional Derivative
    Bayrak, Mine Aylin
    Demir, Ali
    Journal of Computational and Nonlinear Dynamics, 2021, 16 (08)
  • [5] L1 scheme on graded mesh for subdiffusion equation with nonlocal diffusion term
    Chaudhary, Sudhakar
    Kundaliya, Pari J. J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 195 : 119 - 137
  • [6] Symmetric fractional order reduction method with L1 scheme on graded mesh for time fractional nonlocal diffusion-wave equation of Kirchhoff type
    Kundaliya, Pari J.
    Chaudhary, Sudhakar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 149 : 128 - 134
  • [7] Time-fractional Schrödinger equation
    Hassan Emamirad
    Arnaud Rougirel
    Journal of Evolution Equations, 2020, 20 : 279 - 293
  • [8] ERROR ESTIMATE OF THE NONUNIFORM L1 TYPE FORMULA FOR THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Sun, Hong
    Chen, Yanping
    Zhao, Xuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1707 - 1725
  • [9] Local error analysis of L1 scheme for time-fractional diffusion equation on a star-shaped pipe network
    Wang, Jingjia
    Yu, Yongguang
    Hou, Jian
    Meng, Xiangyun
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [10] A local refinement purely meshless scheme for time fractional nonlinear Schr?dinger equation in irregular geometry region
    蒋涛
    蒋戎戎
    黄金晶
    丁玖
    任金莲
    Chinese Physics B, 2021, (02) : 194 - 205