Review of explainable machine learning for anaerobic digestion

被引:43
|
作者
Gupta, Rohit [1 ,2 ,3 ]
Zhang, Le [4 ]
Hou, Jiayi [5 ]
Zhang, Zhikai [6 ,7 ]
Liu, Hongtao [5 ]
You, Siming [1 ]
Ok, Yong Sik [8 ,9 ]
Li, Wangliang [6 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
[2] UCL, Nanoengn Syst Lab, UCL Mech Engn, London WC1E 7JE, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London W1W, England
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Resources & Environm, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[7] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[8] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul 02841, South Korea
[9] Korea Univ, Korea Biochar Res Ctr, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Data -driven modelling; Sustainable waste management; Renewable energy; Bioenergy; Artificial intelligence; LIFE-CYCLE ASSESSMENT; BIOGAS PRODUCTION; VFA CONCENTRATION; FAULT-DETECTION; WASTE; OPTIMIZATION; MODEL; TEMPERATURE;
D O I
10.1016/j.biortech.2022.128468
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion (AD) is a promising technology for recovering value-added resources from organic waste, thus achieving sustainable waste management. The performance of AD is dictated by a variety of factors including system design and operating conditions. This necessitates developing suitable modelling and optimi-zation tools to quantify its off-design performance, where the application of machine learning (ML) and soft computing approaches have received increasing attention. Here, we succinctly reviewed the latest progress in black-box ML approaches for AD modelling with a thrust on global and local model interpretability metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). Categorical applications of the ML and soft computing approaches such as what-if scenario analysis, fault detection in AD systems, long-term operation prediction, and integration of ML with life cycle assessment are discussed. Finally, the research gaps and scopes for future work are summarized.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Review in anaerobic digestion of food waste
    He, Kefang
    Liu, Ying
    Tian, Longjin
    He, Wanyou
    Cheng, Qunpeng
    HELIYON, 2024, 10 (07)
  • [42] Anaerobic digestion of marine macroalgae: A review
    McKennedy, Janet
    Sherlock, Orla
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 52 : 1781 - 1790
  • [43] ANAEROBIC DIGESTION OF POULTRY LITTER: A REVIEW
    Singh, K.
    Lee, K.
    Worley, J.
    Risse, L. M.
    Das, K. C.
    APPLIED ENGINEERING IN AGRICULTURE, 2010, 26 (04) : 677 - 688
  • [44] Anaerobic digestion foaming causes - A review
    Ganidi, Nafsika
    Tyrrel, Sean
    Cartmell, Elise
    BIORESOURCE TECHNOLOGY, 2009, 100 (23) : 5546 - 5554
  • [45] Anaerobic digestion of algae biomass: A review
    Ward, A. J.
    Lewis, D. M.
    Green, B.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2014, 5 : 204 - 214
  • [46] Nanobubble technology in anaerobic digestion: A review
    Chuenchart, Wachiranon
    Karki, Renisha
    Shitanaka, Ty
    Marcelino, Kyle Rafael
    Lu, Hui
    Khanal, Samir Kumar
    BIORESOURCE TECHNOLOGY, 2021, 329
  • [47] Effects of biochar on anaerobic digestion: a review
    Devi, Parmila
    Eskicioglu, Cigdem
    ENVIRONMENTAL CHEMISTRY LETTERS, 2024, 22 (06) : 2845 - 2886
  • [48] Cherry on Top or Real Need? A Review of Explainable Machine Learning in Kidney Transplantation
    de Souza, Alvaro Assis
    Stubbs, Andrew P.
    Hesselink, Dennis A.
    Baan, Carla C.
    Boer, Karin
    TRANSPLANTATION, 2025, 109 (01) : 123 - 132
  • [49] Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review
    Mallma, Mirko Jerber Rodriguez
    Zuloaga-Rotta, Luis
    Borja-Rosales, Ruben
    Mallma, Josef Renato Rodriguez
    Vilca-Aguilar, Marcos
    Salas-Ojeda, Maria
    Mauricio, David
    NEUROLOGY INTERNATIONAL, 2024, 16 (06): : 1285 - 1307
  • [50] Can wood waste be a feedstock for anaerobic digestion? A machine learning assisted meta-analysis
    Gao, Zhenghui
    Cui, Tianyi
    Qian, Hang
    Sapsford, Devin J.
    Cleall, Peter J.
    CHEMICAL ENGINEERING JOURNAL, 2024, 487