Review of explainable machine learning for anaerobic digestion

被引:43
|
作者
Gupta, Rohit [1 ,2 ,3 ]
Zhang, Le [4 ]
Hou, Jiayi [5 ]
Zhang, Zhikai [6 ,7 ]
Liu, Hongtao [5 ]
You, Siming [1 ]
Ok, Yong Sik [8 ,9 ]
Li, Wangliang [6 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
[2] UCL, Nanoengn Syst Lab, UCL Mech Engn, London WC1E 7JE, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London W1W, England
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Resources & Environm, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[7] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[8] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul 02841, South Korea
[9] Korea Univ, Korea Biochar Res Ctr, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Data -driven modelling; Sustainable waste management; Renewable energy; Bioenergy; Artificial intelligence; LIFE-CYCLE ASSESSMENT; BIOGAS PRODUCTION; VFA CONCENTRATION; FAULT-DETECTION; WASTE; OPTIMIZATION; MODEL; TEMPERATURE;
D O I
10.1016/j.biortech.2022.128468
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion (AD) is a promising technology for recovering value-added resources from organic waste, thus achieving sustainable waste management. The performance of AD is dictated by a variety of factors including system design and operating conditions. This necessitates developing suitable modelling and optimi-zation tools to quantify its off-design performance, where the application of machine learning (ML) and soft computing approaches have received increasing attention. Here, we succinctly reviewed the latest progress in black-box ML approaches for AD modelling with a thrust on global and local model interpretability metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). Categorical applications of the ML and soft computing approaches such as what-if scenario analysis, fault detection in AD systems, long-term operation prediction, and integration of ML with life cycle assessment are discussed. Finally, the research gaps and scopes for future work are summarized.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Explainable Machine Learning for Intrusion Detection
    Bellegdi, Sameh
    Selamat, Ali
    Olatunji, Sunday O.
    Fujita, Hamido
    Krejcar, Ondfrej
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 122 - 134
  • [32] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27
  • [33] Explainable machine learning in cybersecurity: A survey
    Yan, Feixue
    Wen, Sheng
    Nepal, Surya
    Paris, Cecile
    Xiang, Yang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 12305 - 12334
  • [34] Ammonia inhibition in anaerobic digestion: A review
    Yenigun, Orhan
    Demirel, Burak
    PROCESS BIOCHEMISTRY, 2013, 48 (5-6) : 901 - 911
  • [35] Inhibition of anaerobic digestion process: A review
    Chen, Ye
    Cheng, Jay J.
    Creamer, Kurt S.
    BIORESOURCE TECHNOLOGY, 2008, 99 (10) : 4044 - 4064
  • [36] Optimization of the anaerobic digestion of biomass: A review
    Boontian, N. (n.boontian@sut.ac.th), 1600, Editura ASE Bucuresti
  • [37] Anaerobic digestion: A review on process monitoring
    Wu, Di
    Li, Lei
    Zhao, Xiaofei
    Peng, Yun
    Yang, Pingjin
    Peng, Xuya
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 103 : 1 - 12
  • [38] Toxicants inhibiting anaerobic digestion: A review
    Chen, Jian Lin
    Ortiz, Raphael
    Steele, Terry W. J.
    Stuckey, David C.
    BIOTECHNOLOGY ADVANCES, 2014, 32 (08) : 1523 - 1534
  • [39] The role of additives on anaerobic digestion: A review
    Romero-Gueiza, M. S.
    Vila, J. J.
    Mata-Alvarez, J.
    Chimenos, J. M.
    Astals, S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 : 1486 - 1499
  • [40] The Anaerobic Digestion of Rice Straw: A Review
    Mussoline, Wendy
    Esposito, Giovanni
    Giordano, Andrea
    Lens, Piet
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2013, 43 (09) : 895 - 915