Review of explainable machine learning for anaerobic digestion

被引:43
|
作者
Gupta, Rohit [1 ,2 ,3 ]
Zhang, Le [4 ]
Hou, Jiayi [5 ]
Zhang, Zhikai [6 ,7 ]
Liu, Hongtao [5 ]
You, Siming [1 ]
Ok, Yong Sik [8 ,9 ]
Li, Wangliang [6 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
[2] UCL, Nanoengn Syst Lab, UCL Mech Engn, London WC1E 7JE, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London W1W, England
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Resources & Environm, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[7] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[8] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul 02841, South Korea
[9] Korea Univ, Korea Biochar Res Ctr, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Data -driven modelling; Sustainable waste management; Renewable energy; Bioenergy; Artificial intelligence; LIFE-CYCLE ASSESSMENT; BIOGAS PRODUCTION; VFA CONCENTRATION; FAULT-DETECTION; WASTE; OPTIMIZATION; MODEL; TEMPERATURE;
D O I
10.1016/j.biortech.2022.128468
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion (AD) is a promising technology for recovering value-added resources from organic waste, thus achieving sustainable waste management. The performance of AD is dictated by a variety of factors including system design and operating conditions. This necessitates developing suitable modelling and optimi-zation tools to quantify its off-design performance, where the application of machine learning (ML) and soft computing approaches have received increasing attention. Here, we succinctly reviewed the latest progress in black-box ML approaches for AD modelling with a thrust on global and local model interpretability metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). Categorical applications of the ML and soft computing approaches such as what-if scenario analysis, fault detection in AD systems, long-term operation prediction, and integration of ML with life cycle assessment are discussed. Finally, the research gaps and scopes for future work are summarized.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Explainable machine learning in materials science
    Zhong, Xiaoting
    Gallagher, Brian
    Liu, Shusen
    Kailkhura, Bhavya
    Hiszpanski, Anna
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [22] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Bjoern
    Andre, Elisabeth
    KUNSTLICHE INTELLIGENZ, 2020, 34 (02): : 143 - 164
  • [23] Principles and Practice of Explainable Machine Learning
    Belle, Vaishak
    Papantonis, Ioannis
    FRONTIERS IN BIG DATA, 2021, 4
  • [24] Explainable Machine Learning for Trustworthy AI
    Giannotti, Fosca
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 3 - 3
  • [25] Explainable Machine Learning for Fraud Detection
    Psychoula, Ismini
    Gutmann, Andreas
    Mainali, Pradip
    Lee, S. H.
    Dunphy, Paul
    Petitcolas, Fabien A. P.
    COMPUTER, 2021, 54 (10) : 49 - 59
  • [26] Explainable machine learning models with privacy
    Bozorgpanah, Aso
    Torra, Vicenc
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (01) : 31 - 50
  • [27] eXplainable Cooperative Machine Learning with NOVA
    Tobias Baur
    Alexander Heimerl
    Florian Lingenfelser
    Johannes Wagner
    Michel F. Valstar
    Björn Schuller
    Elisabeth André
    KI - Künstliche Intelligenz, 2020, 34 : 143 - 164
  • [28] Explainable machine learning models with privacy
    Aso Bozorgpanah
    Vicenç Torra
    Progress in Artificial Intelligence, 2024, 13 : 31 - 50
  • [29] Hardware Acceleration of Explainable Machine Learning
    Pan, Zhixin
    Mishra, Prabhat
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1127 - 1130
  • [30] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Björn
    André, Elisabeth
    KI - Kunstliche Intelligenz, 2020, 34 (02): : 143 - 164