Review of explainable machine learning for anaerobic digestion

被引:43
|
作者
Gupta, Rohit [1 ,2 ,3 ]
Zhang, Le [4 ]
Hou, Jiayi [5 ]
Zhang, Zhikai [6 ,7 ]
Liu, Hongtao [5 ]
You, Siming [1 ]
Ok, Yong Sik [8 ,9 ]
Li, Wangliang [6 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
[2] UCL, Nanoengn Syst Lab, UCL Mech Engn, London WC1E 7JE, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London W1W, England
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Resources & Environm, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[7] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[8] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul 02841, South Korea
[9] Korea Univ, Korea Biochar Res Ctr, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Data -driven modelling; Sustainable waste management; Renewable energy; Bioenergy; Artificial intelligence; LIFE-CYCLE ASSESSMENT; BIOGAS PRODUCTION; VFA CONCENTRATION; FAULT-DETECTION; WASTE; OPTIMIZATION; MODEL; TEMPERATURE;
D O I
10.1016/j.biortech.2022.128468
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion (AD) is a promising technology for recovering value-added resources from organic waste, thus achieving sustainable waste management. The performance of AD is dictated by a variety of factors including system design and operating conditions. This necessitates developing suitable modelling and optimi-zation tools to quantify its off-design performance, where the application of machine learning (ML) and soft computing approaches have received increasing attention. Here, we succinctly reviewed the latest progress in black-box ML approaches for AD modelling with a thrust on global and local model interpretability metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). Categorical applications of the ML and soft computing approaches such as what-if scenario analysis, fault detection in AD systems, long-term operation prediction, and integration of ML with life cycle assessment are discussed. Finally, the research gaps and scopes for future work are summarized.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Systematic Review of Machine-Learning Solutions in Anaerobic Digestion
    Rutland, Harvey
    You, Jiseon
    Liu, Haixia
    Bull, Larry
    Reynolds, Darren
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [2] Thermodynamics and explainable machine learning assist in interpreting biodegradability of dissolved organic matter in sludge anaerobic digestion with thermal hydrolysis
    Liu, Jibao
    Wang, Chenlu
    Zhou, Jiahui
    Dong, Kun
    Elsamadony, Mohamed
    Xu, Yufeng
    Fujii, Manabu
    Wei, Yuansong
    Wang, Dunqiu
    BIORESOURCE TECHNOLOGY, 2024, 412
  • [3] Application of machine learning in anaerobic digestion: Perspectives and challenges
    Cruz, Ianny Andrade
    Chuenchart, Wachiranon
    Long, Fei
    Surendra, K. C.
    Andrade, Larissa Renata Santos
    Bilal, Muhammad
    Liu, Hong
    Figueiredo, Renan Tavares
    Khanal, Samir Kumar
    Ferreira, Luiz Fernando Romanholo
    BIORESOURCE TECHNOLOGY, 2022, 345
  • [4] Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review
    Jordan Yao Xing Ling
    Yi Jing Chan
    Jia Win Chen
    Daniel Jia Sheng Chong
    Angelina Lin Li Tan
    Senthil Kumar Arumugasamy
    Phei Li Lau
    Environmental Science and Pollution Research, 2024, 31 : 19085 - 19104
  • [5] Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review
    Ling, Jordan Yao Xing
    Chan, Yi Jing
    Chen, Jia Win
    Chong, Daniel Jia Sheng
    Tan, Angelina Lin Li
    Arumugasamy, Senthil Kumar
    Lau, Phei Li
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (13) : 19085 - 19104
  • [6] Machine Learning Algorithms for Temperature Management in the Anaerobic Digestion Process
    Cinar, Senem Onen
    Cinar, Samet
    Kuchta, Kerstin
    FERMENTATION-BASEL, 2022, 8 (02):
  • [7] Explainable AI: A Review of Machine Learning Interpretability Methods
    Linardatos, Pantelis
    Papastefanopoulos, Vasilis
    Kotsiantis, Sotiris
    ENTROPY, 2021, 23 (01) : 1 - 45
  • [8] Explainable Machine Learning
    Garcke, Jochen
    Roscher, Ribana
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 169 - 170
  • [9] A hybrid approach of anaerobic digestion model no. 1 and machine learning to model and optimize continuous anaerobic digestion processes
    Ge, Yadong
    Tao, Junyu
    Wang, Zhi
    Mu, Lan
    Guo, Wei
    Cheng, Zhanjun
    Yan, Beibei
    Shi, Yan
    Su, Hong
    Chen, Guanyi
    BIOMASS & BIOENERGY, 2024, 184
  • [10] Machine learning for high solid anaerobic digestion: Performance prediction and optimization
    Ganeshan, Prabakaran
    Bose, Archishman
    Lee, Jintae
    Barathi, Selvaraj
    Rajendran, Karthik
    BIORESOURCE TECHNOLOGY, 2024, 400