Approximate solutions of the fractional damped nonlinear oscillator subject to Van der Pol system

被引:0
|
作者
Zhang, Yanni [1 ]
Zhao, Zhen [2 ,3 ,4 ]
Pang, Jing [2 ,3 ,5 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou, Peoples R China
[2] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Peoples R China
[3] Inner Mongolia Univ Tecnol, Inner Mongolia Key Lab Stat Anal Theory Life Data, Hohhot, Peoples R China
[4] Inner Mongolia Univ Technol, Coll Sci, Aimin St, Hohhot 010050, Peoples R China
[5] Inner Mongolia Univ Technol, Aimin Rd,Aimin St, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal principle; fractal Van der Pol damped oscillator; Laplace transform; variational iteration method; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; PULL-IN INSTABILITY; FORCE; BEHAVIOR;
D O I
10.1177/14613484221149515
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper deals with fractal Van der Pol damped nonlinear oscillators equation having nonlinearity. By combining the techniques of the Laplace transform and the variational iteration method, we establish approximate periodic solutions for the fractal damped nonlinear systems. In this simple way, nonlinear differential equations can be easily converted into linear differential equations. Illustrative examples including the Van der Pol damped nonlinear oscillator reveal that this method is very effective and convenient for solving fractal nonlinear differential equations. Finally, comparison of the obtained results with those of the other achieved method, also reveals that this coupling method not only suggests an easier method due to the Lagrange multiplier but also can be easily extended to other nonlinear systems.
引用
收藏
页码:1312 / 1318
页数:7
相关论文
共 50 条
  • [21] Design of a nonlinear observer for a chaotic system consisting of Van der pol oscillator coupled to a linear oscillator
    Fotsin, HB
    Woafo, P
    PHYSICA SCRIPTA, 2005, 71 (03) : 241 - 244
  • [22] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78
  • [23] Asymptotic solution of the van der Pol oscillator with small fractional damping
    Xie, Feng
    Lin, Xueyuan
    PHYSICA SCRIPTA, 2009, T136
  • [24] Primary resonance of fractional-order van der Pol oscillator
    Yong-Jun Shen
    Peng Wei
    Shao-Pu Yang
    Nonlinear Dynamics, 2014, 77 : 1629 - 1642
  • [25] NEIMARK BIFURCATIONS OF A GENERALIZED DUFFING-VAN DER POL OSCILLATOR WITH NONLINEAR FRACTIONAL ORDER DAMPING
    Leung, A. Y. T.
    Yang, H. X.
    Zhu, P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [26] On the Van der Pol oscillator: An overview
    Cveticanin, Livija
    ACOUSTICS & VIBRATION OF MECHANICAL STRUCTURES, 2013, 430 : 3 - 13
  • [27] THE MODIFIED VAN DER POL OSCILLATOR
    ROBINSON, FNH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) : 135 - 150
  • [28] ''Chirped'' Van der Pol oscillator
    Meerson, B
    Shinar, GI
    PHYSICAL REVIEW E, 1997, 56 (01): : 256 - 258
  • [29] The symmetrical Van der pol oscillator
    Kaplan, BZ
    Horen, Y
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 2002, 39 (02) : 128 - 137
  • [30] Dynamical property analysis of fractionally damped van der pol oscillator and its application
    Zhong, Qiuhui
    Zhang, Chunrui
    2012 INTERNATIONAL WORKSHOP ON IMAGE PROCESSING AND OPTICAL ENGINEERING, 2012, 8335