Approximate solutions of the fractional damped nonlinear oscillator subject to Van der Pol system

被引:0
|
作者
Zhang, Yanni [1 ]
Zhao, Zhen [2 ,3 ,4 ]
Pang, Jing [2 ,3 ,5 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou, Peoples R China
[2] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Peoples R China
[3] Inner Mongolia Univ Tecnol, Inner Mongolia Key Lab Stat Anal Theory Life Data, Hohhot, Peoples R China
[4] Inner Mongolia Univ Technol, Coll Sci, Aimin St, Hohhot 010050, Peoples R China
[5] Inner Mongolia Univ Technol, Aimin Rd,Aimin St, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal principle; fractal Van der Pol damped oscillator; Laplace transform; variational iteration method; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; PULL-IN INSTABILITY; FORCE; BEHAVIOR;
D O I
10.1177/14613484221149515
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper deals with fractal Van der Pol damped nonlinear oscillators equation having nonlinearity. By combining the techniques of the Laplace transform and the variational iteration method, we establish approximate periodic solutions for the fractal damped nonlinear systems. In this simple way, nonlinear differential equations can be easily converted into linear differential equations. Illustrative examples including the Van der Pol damped nonlinear oscillator reveal that this method is very effective and convenient for solving fractal nonlinear differential equations. Finally, comparison of the obtained results with those of the other achieved method, also reveals that this coupling method not only suggests an easier method due to the Lagrange multiplier but also can be easily extended to other nonlinear systems.
引用
收藏
页码:1312 / 1318
页数:7
相关论文
共 50 条
  • [31] 'Chirped' Van der Pol oscillator
    Meerson, Baruch
    Shinar, Guy I.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (1-A pt A):
  • [32] Analytical approximations of the period of a generalized nonlinear van der Pol oscillator
    Andrianov, Igor V.
    van Horssen, Wim T.
    JOURNAL OF SOUND AND VIBRATION, 2006, 295 (3-5) : 1099 - 1104
  • [33] An analysis of a nonlinear elastic force van der Pol oscillator equation
    Oyedeji, K
    JOURNAL OF SOUND AND VIBRATION, 2005, 281 (1-2) : 417 - 422
  • [34] An efficient approach to solving fractional Van der Pol–Duffing jerk oscillator
    Yusry O El-Dib
    CommunicationsinTheoreticalPhysics, 2022, 74 (10) : 54 - 63
  • [35] More Details on Analysis of Fractional-order Van der Pol Oscillator
    Tavazoei, Mohammad S.
    Haeri, Mohammad
    Attari, Mina
    Bolouki, Sadegh
    Siami, Milad
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (06) : 803 - 819
  • [36] Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative
    Shen, Yongjun
    Wei, Peng
    Sui, Chuanyi
    Yang, Shaopu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [37] Analysis on limit cycle of fractional-order van der Pol oscillator
    Shen, Yongjun
    Yang, Shaopu
    Sui, Chuanyi
    CHAOS SOLITONS & FRACTALS, 2014, 67 : 94 - 102
  • [38] Numerical behavior of the variable-order fractional Van der Pol oscillator
    Ramroodi, N.
    Tehrani, H. Ahsani
    Skandari, M. H. Noori
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
  • [39] Chaotic Control in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 83 - 88
  • [40] Bifurcation Control of an Incommensurate Fractional-Order Van der Pol Oscillator
    Xiao Min
    Zheng Wei Xing
    Wan Youhong
    Fan Chunxia
    Jiang Guoping
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 2206 - 2211