Approximate solutions of the fractional damped nonlinear oscillator subject to Van der Pol system

被引:0
|
作者
Zhang, Yanni [1 ]
Zhao, Zhen [2 ,3 ,4 ]
Pang, Jing [2 ,3 ,5 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou, Peoples R China
[2] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Peoples R China
[3] Inner Mongolia Univ Tecnol, Inner Mongolia Key Lab Stat Anal Theory Life Data, Hohhot, Peoples R China
[4] Inner Mongolia Univ Technol, Coll Sci, Aimin St, Hohhot 010050, Peoples R China
[5] Inner Mongolia Univ Technol, Aimin Rd,Aimin St, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal principle; fractal Van der Pol damped oscillator; Laplace transform; variational iteration method; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; PULL-IN INSTABILITY; FORCE; BEHAVIOR;
D O I
10.1177/14613484221149515
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper deals with fractal Van der Pol damped nonlinear oscillators equation having nonlinearity. By combining the techniques of the Laplace transform and the variational iteration method, we establish approximate periodic solutions for the fractal damped nonlinear systems. In this simple way, nonlinear differential equations can be easily converted into linear differential equations. Illustrative examples including the Van der Pol damped nonlinear oscillator reveal that this method is very effective and convenient for solving fractal nonlinear differential equations. Finally, comparison of the obtained results with those of the other achieved method, also reveals that this coupling method not only suggests an easier method due to the Lagrange multiplier but also can be easily extended to other nonlinear systems.
引用
收藏
页码:1312 / 1318
页数:7
相关论文
共 50 条
  • [1] Construction of approximate periodic solutions to a modified van der Pol oscillator
    Marinca, V.
    Draganescu, G. E.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4355 - 4362
  • [2] Approximate solutions to Van der Pol damped nonlinear oscillators by means of He's energy balance method
    Ganji, D. D.
    Esmaeilpour, M.
    Soleimani, S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (09) : 2014 - 2023
  • [3] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Munjam, Shankar Rao
    Seshadri, Rajeswari
    NONLINEAR DYNAMICS, 2019, 95 (04) : 2837 - 2854
  • [4] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Shankar Rao Munjam
    Rajeswari Seshadri
    Nonlinear Dynamics, 2019, 95 : 2837 - 2854
  • [5] Dynamics of coupled nonlinear oscillators of different attractors van der Pol oscillator and damped Duffing oscillator
    Han, YJ
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2000, 37 (01) : 3 - 9
  • [6] Approximate expressions of a fractional order Van der Pol oscillator by the residue harmonic balance method
    Xiao, Min
    Zheng, Wei Xing
    Cao, Jinde
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 89 : 1 - 12
  • [7] Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method
    Kavyanpoor, Mobin
    Shokrollahi, Saeed
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 44 - 45
  • [8] Nonlinear analysis in a modified van der Pol oscillator
    Braga, Denis de Carvalho
    de Faria, Nivaldo Goncalves
    Mello, Luis Fernando
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 474 - 486
  • [9] Periodic Solutions in the van der Pol Oscillator: A Comparison
    Bares, Cinthya A.
    Moiola, Jorge L.
    Calandrini, Guillermo L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [10] On the lack of analytic solutions of the Van der Pol oscillator
    Panayotounakos, DE
    Panayotounakou, ND
    Vakakis, AF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (09): : 611 - 615