A new diagonal and Toeplitz splitting preconditioning method for solving time-dependent Riesz space-fractional diffusion equations

被引:0
|
作者
Tang, Shi-Ping [1 ]
Huang, Yu-Mei [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Riesz space-fractional diffusion equations; Matrix splitting iteration methods; Preconditioner; Spectral distribution;
D O I
10.1016/j.aml.2023.108901
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial-boundary value problem of the Riesz space-fractional diffusions equation is an important class of equations arising in many application fields. In this paper, we apply the Grunwald-Letnikov type formulas to discretize the time-dependent Riesz space-fractional diffusion equations, and obtain a system of linear equations from the discretization results. A new diagonal and Toeplitz splitting (NDTS) iteration method is constructed for this linear system. Based on the NDTS iteration method, an NDTS tau preconditioner is proposed and the generalized minimal residual (GMRES) method combined with this preconditioner is applied to solve the linear system. We theoretically show that the eigenvalues of the NDTS tau preconditioned matrix are clustered. Numerical experiments illustrate the efficiency of the proposed method.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [42] Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions
    Xie, Changping
    Fang, Shaomei
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 176 : 1 - 18
  • [43] Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations
    Bai, Zhong-Zhi
    Lu, Kang-Ya
    Pan, Jian-Yu
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (04)
  • [44] An efficient conservative splitting characteristic difference method for solving 2-d space-fractional advection-diffusion equations
    Wang, Ning
    Zhang, Xinxia
    Zhou, Zhongguo
    Pan, Hao
    Wang, Yan
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [45] An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations
    Ran, Yu-Hong
    Wu, Qian-Qian
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [46] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Chun-Hua Zhang
    Jian-Wei Yu
    Xiang Wang
    [J]. Numerical Algorithms, 2023, 92 : 1813 - 1836
  • [47] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Zhang, Chun-Hua
    Yu, Jian-Wei
    Wang, Xiang
    [J]. NUMERICAL ALGORITHMS, 2023, 92 (03) : 1813 - 1836
  • [48] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [49] Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem
    Zheng, G. H.
    Wei, T.
    [J]. INVERSE PROBLEMS, 2010, 26 (11)
  • [50] Tensor-Train Format Solution with Preconditioned Iterative Method for High Dimensional Time-Dependent Space-Fractional Diffusion Equations with Error Analysis
    Chou, Lot-Kei
    Lei, Siu-Long
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1731 - 1763