Enhancing quantum support vector machines through variational kernel training

被引:6
|
作者
Innan, N. [1 ,2 ]
Khan, M. A. Z. [2 ,3 ]
Panda, B. [4 ]
Bennai, M. [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben Msick, Quantum Phys & Magnetism Team, LPMC, Casablanca, Morocco
[2] Zaiku Grp Ltd, Liverpool, England
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Robot Autonomous Intelligence Learning Lab RAIL, 1 Jan Smuts Ave, ZA-2000 Johannesburg, Gauteng, South Africa
[4] Indian Inst Sci Educ & Res IISER, Berhampur, Odisha, India
关键词
Quantum machine learning; Quantum support vector machine; Kernel; Quantum variational algorithm; Classification;
D O I
10.1007/s11128-023-04138-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new model in quantum machine learning (QML) that combines the strengths of existing quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM) methods. Our proposed model, quantum variational kernel SVM (QVK-SVM), utilizes quantum kernel and quantum variational algorithms to improve accuracy in QML applications. In this paper, we conduct extensive experiments on the Iris dataset to evaluate the performance of QVK-SVM against QK-SVM and QV-SVM models. Our results demonstrate that QVK-SVM outperforms both existing models regarding accuracy, loss, and confusion matrix indicators. We believe that QVK-SVM can be a reliable and transformative tool for QML applications and recommend its use in future QML research.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Fast Training of Support Vector Machines Using Top-down Kernel Clustering
    Liu, Xiao-Zhang
    Qiu, Hui-Zhen
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 968 - +
  • [22] Training quantum Boltzmann machines with the β-variational quantum eigensolver
    Huijgen, Onno
    Coopmans, Luuk
    Najafi, Peyman
    Benedetti, Marcello
    Kappen, Hilbert J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [23] Training Invariant Support Vector Machines
    Dennis Decoste
    Bernhard Schölkopf
    Machine Learning, 2002, 46 : 161 - 190
  • [24] Incremental training of support vector machines
    Shilton, A
    Palaniswami, M
    Ralph, D
    Tsoi, AC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (01): : 114 - 131
  • [25] Training semiparametric support vector machines
    Mattera, D
    Palmieri, F
    Haykin, S
    NEURAL NETS - WIRN VIETRI-99, 1999, : 272 - 277
  • [26] Training invariant support vector machines
    Decoste, D
    Schölkopf, B
    MACHINE LEARNING, 2002, 46 (1-3) : 161 - 190
  • [27] Dropout Training for Support Vector Machines
    Chen, Ning
    Zhu, Jun
    Chen, Jianfei
    Zhang, Bo
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1752 - 1759
  • [28] The complexity of quantum support vector machines
    Gentinetta, Gian
    Thomsen, Arne
    Sutter, David
    Woerner, Stefan
    QUANTUM, 2024, 8
  • [29] On neural quantum support vector machines
    Simon, Lars
    Radons, Manuel
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [30] Opening the kernel of kernel partial least squares and support vector machines
    Postma, G. J.
    Krooshof, P. W. T.
    Buydens, L. M. C.
    ANALYTICA CHIMICA ACTA, 2011, 705 (1-2) : 123 - 134