Training quantum Boltzmann machines with the β-variational quantum eigensolver

被引:1
|
作者
Huijgen, Onno [1 ]
Coopmans, Luuk [2 ]
Najafi, Peyman [1 ]
Benedetti, Marcello [2 ]
Kappen, Hilbert J. [1 ]
机构
[1] Radboud Univ Nijmegen, Nijmegen, Netherlands
[2] Quantinuum, Partnership House,Carlisle Pl, London SW1P 1BX, England
来源
关键词
quantum Boltzmann machines; beta-variational quantum eigensolver; quantum state preparation; quantum tomography; quantum machine learning;
D O I
10.1088/2632-2153/ad370f
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quantum Boltzmann machine (QBM) is a generative machine learning model for both classical data and quantum states. Training the QBM consists of minimizing the relative entropy from the model to the target state. This requires QBM expectation values which are computationally intractable for large models in general. It is therefore important to develop heuristic training methods that work well in practice. In this work, we study a heuristic method characterized by a nested loop: the inner loop trains the beta-variational quantum eigensolver (beta-VQE) by Liu et al (2021 Mach. Learn.: Sci. Technol. 2 025011) to approximate the QBM expectation values; the outer loop trains the QBM to minimize the relative entropy to the target. We show that low-rank representations obtained by beta-VQE provide an efficient way to learn low-rank target states, such as classical data and low-temperature quantum tomography. We test the method on both classical and quantum target data with numerical simulations of up to 10 qubits. For the cases considered here, the obtained QBMs can model the target to high fidelity. We implement a trained model on a physical quantum device. The approach offers a valuable route towards variationally training QBMs on near-term quantum devices.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Variational quantum Boltzmann machines
    Christa Zoufal
    Aurélien Lucchi
    Stefan Woerner
    [J]. Quantum Machine Intelligence, 2021, 3
  • [2] Variational quantum Boltzmann machines
    Zoufal, Christa
    Lucchi, Aurelien
    Woerner, Stefan
    [J]. QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [3] Variational denoising for variational quantum eigensolver
    Tran, Quoc Hoan
    Kikuchi, Shinji
    Oshima, Hirotaka
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [4] Training Quantum Boltzmann Machines with Coresets
    Viszlai, Joshua
    Tomesh, Teague
    Gokhale, Pranav
    Anschuetz, Eric
    Chong, Frederic T.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 292 - 298
  • [5] Accelerated Variational Quantum Eigensolver
    Wang, Daochen
    Higgott, Oscar
    Brierley, Stephen
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (14)
  • [6] Variational quantum eigensolver for frustrated quantum systems
    Uvarov, Alexey
    Biamonte, Jacob D.
    Yudin, Dmitry
    [J]. PHYSICAL REVIEW B, 2020, 102 (07)
  • [7] Variational quantum state eigensolver
    M. Cerezo
    Kunal Sharma
    Andrew Arrasmith
    Patrick J. Coles
    [J]. npj Quantum Information, 8
  • [8] Variational quantum state eigensolver
    Cerezo, M.
    Sharma, Kunal
    Arrasmith, Andrew
    Coles, Patrick J.
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [9] Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
    Harwood, Stuart M.
    Trenev, Dimitar
    Stober, Spencer T.
    Barkoutsos, Panagiotis
    Gujarati, Tanvi P.
    Mostame, Sarah
    Greenberg, Donny
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (01):
  • [10] Optimization of the variational quantum eigensolver for quantum chemistry applications
    de Keijzer, R. J. P. T.
    Colussi, V. E.
    Skoric, B.
    Kokkelmans, S. J. J. M. F.
    [J]. AVS QUANTUM SCIENCE, 2022, 4 (01):