Variational quantum Boltzmann machines

被引:43
|
作者
Zoufal, Christa [1 ,2 ]
Lucchi, Aurelien [2 ]
Woerner, Stefan [1 ]
机构
[1] IBM Res Zurich, IBM Quantum, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Quantum machine learning; Variational quantum imaginary time evolution; Generative learning; Discriminative learning; ALGORITHM; SIMULATIONS;
D O I
10.1007/s42484-020-00033-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a novel realization approach to quantum Boltzmann machines (QBMs). The preparation of the required Gibbs states, as well as the evaluation of the loss function's analytic gradient, is based on variational quantum imaginary time evolution, a technique that is typically used for ground-state computation. In contrast to existing methods, this implementation facilitates near-term compatible QBM training with gradients of the actual loss function for arbitrary parameterized Hamiltonians which do not necessarily have to be fully visible but may also include hidden units. The variational Gibbs state approximation is demonstrated with numerical simulations and experiments run on real quantum hardware provided by IBM Quantum. Furthermore, we illustrate the application of this variational QBM approach to generative and discriminative learning tasks using numerical simulation.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Variational quantum Boltzmann machines
    Christa Zoufal
    Aurélien Lucchi
    Stefan Woerner
    Quantum Machine Intelligence, 2021, 3
  • [2] Training quantum Boltzmann machines with the β-variational quantum eigensolver
    Huijgen, Onno
    Coopmans, Luuk
    Najafi, Peyman
    Benedetti, Marcello
    Kappen, Hilbert J.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [3] Variational restricted Boltzmann machines to automated anomaly detection
    Konstantinos Demertzis
    Lazaros Iliadis
    Elias Pimenidis
    Panagiotis Kikiras
    Neural Computing and Applications, 2022, 34 : 15207 - 15220
  • [4] Variational restricted Boltzmann machines to automated anomaly detection
    Demertzis, Konstantinos
    Iliadis, Lazaros
    Pimenidis, Elias
    Kikiras, Panagiotis
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15207 - 15220
  • [5] Mixture Variational Autoencoder of Boltzmann Machines for Text Processing
    Guilherme Gomes, Bruno
    Murai, Fabricio
    Goussevskaia, Olga
    Couto Da Silva, Ana Paula
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2021), 2021, 12801 : 46 - 56
  • [6] Restricted Boltzmann machines in quantum physics
    Roger G. Melko
    Giuseppe Carleo
    Juan Carrasquilla
    J. Ignacio Cirac
    Nature Physics, 2019, 15 : 887 - 892
  • [7] Restricted Boltzmann machines in quantum physics
    Melko, Roger G.
    Carleo, Giuseppe
    Carrasquilla, Juan
    Cirac, J. Ignacio
    NATURE PHYSICS, 2019, 15 (09) : 887 - 892
  • [8] Training Quantum Boltzmann Machines with Coresets
    Viszlai, Joshua
    Tomesh, Teague
    Gokhale, Pranav
    Anschuetz, Eric
    Chong, Frederic T.
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 292 - 298
  • [9] Boltzmann machine learning with a variational quantum algorithm
    Shingu, Yuta
    Seki, Yuya
    Watabe, Shohei
    Endo, Suguru
    Matsuzaki, Yuichiro
    Kawabata, Shiro
    Nikuni, Tetsuro
    Hakoshima, Hideaki
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [10] REINFORCEMENT LEARNING USING QUANTUM BOLTZMANN MACHINES
    Crawford, Daniel
    Levit, Anna
    Ghadermarzy, Navid
    Oberoi, Jaspreet S.
    Ronaghe, Pooya
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (1-2) : 51 - 74