Enhancing quantum support vector machines through variational kernel training

被引:6
|
作者
Innan, N. [1 ,2 ]
Khan, M. A. Z. [2 ,3 ]
Panda, B. [4 ]
Bennai, M. [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben Msick, Quantum Phys & Magnetism Team, LPMC, Casablanca, Morocco
[2] Zaiku Grp Ltd, Liverpool, England
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Robot Autonomous Intelligence Learning Lab RAIL, 1 Jan Smuts Ave, ZA-2000 Johannesburg, Gauteng, South Africa
[4] Indian Inst Sci Educ & Res IISER, Berhampur, Odisha, India
关键词
Quantum machine learning; Quantum support vector machine; Kernel; Quantum variational algorithm; Classification;
D O I
10.1007/s11128-023-04138-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new model in quantum machine learning (QML) that combines the strengths of existing quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM) methods. Our proposed model, quantum variational kernel SVM (QVK-SVM), utilizes quantum kernel and quantum variational algorithms to improve accuracy in QML applications. In this paper, we conduct extensive experiments on the Iris dataset to evaluate the performance of QVK-SVM against QK-SVM and QV-SVM models. Our results demonstrate that QVK-SVM outperforms both existing models regarding accuracy, loss, and confusion matrix indicators. We believe that QVK-SVM can be a reliable and transformative tool for QML applications and recommend its use in future QML research.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Kernel Support Vector Machines and Convolutional Neural Networks
    Jiang, Shihao
    Hartley, Richard
    Fernando, Basura
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 560 - 566
  • [42] Analysis of legendre polynomial kernel in support vector machines
    Djelloul, Naima
    Amir, Abdessamad
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2019, 10 (06) : 580 - 595
  • [43] ASYMPTOTIC EFFICIENCY OF KERNEL SUPPORT VECTOR MACHINES (SVM)
    Norkin, V. I.
    Keyzer, M. A.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (04) : 575 - 588
  • [44] The pharmacophore kernel for virtual screening with support vector machines
    Mahe, Pierre
    Ralaivola, Liva
    Stoven, Veronique
    Vert, Jean-Philippe
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (05) : 2003 - 2014
  • [45] Support vector machines based on hybrid kernel function
    Dept. of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    不详
    Harbin Gongye Daxue Xuebao, 2007, 11 (1704-1706):
  • [46] Feature selection for support vector machines with RBF kernel
    Liu, Quanzhong
    Chen, Chihau
    Zhang, Yang
    Hu, Zhengguo
    ARTIFICIAL INTELLIGENCE REVIEW, 2011, 36 (02) : 99 - 115
  • [47] Kernel variable selection for multicategory support vector machines
    Park, Beomjin
    Park, Changyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 186
  • [48] WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION
    Tong Yubing Yang Dongkai Zhang Qishan (Dept of Electronic Information Engineering
    Journal of Electronics(China), 2006, (04) : 539 - 542
  • [49] Support vector machines, kernel logistic regression and boosting
    Zhu, J
    Hastie, R
    MULTIPLE CLASSIFIER SYSTEMS, 2002, 2364 : 16 - 26
  • [50] Feature selection for support vector machines with RBF kernel
    Quanzhong Liu
    Chihau Chen
    Yang Zhang
    Zhengguo Hu
    Artificial Intelligence Review, 2011, 36 : 99 - 115