BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

被引:5
|
作者
Askarihemmat, Mohammadhossein [1 ]
Wagner, Sean [2 ]
Bilaniuk, Olexa [3 ]
Hariri, Yassine [4 ]
Savaria, Yvon [1 ]
David, Jean-Pierre [1 ]
机构
[1] Ecole Polytechn Montreal, Montreal, PQ, Canada
[2] IBM Corp, Toronto, ON, Canada
[3] Mila, Montreal, PQ, Canada
[4] CMC Microsyst, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
neural networks; hardware acceleration; FPGA; low-precision;
D O I
10.1145/3566097.3567872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a DNN accelerator that allows inference at arbitrary precision with dedicated processing elements that are configurable at the bit level. Our DNN accelerator has 8 Processing Elements controlled by a RISC-V controller with a combined 8.2 TMACs of computational power when implemented with the recent Alveo U250 FPGA platform. We develop a code generator tool that ingests CNN models in ONNX format and generates an executable command stream for the RISC-V controller. We demonstrate the scalable throughput of our accelerator by running different DNN kernels and models when different quantization levels are selected. Compared to other low precision accelerators, our accelerator provides run time programmability without hardware reconfiguration and can accelerate DNNs with multiple quantization levels, regardless of the target FPGA size. BARVINN is an open source project and it is available at https://github.com/hossein1387/BARVINN.
引用
下载
收藏
页码:483 / 489
页数:7
相关论文
共 50 条
  • [31] Implementation and integration of Keccak accelerator on RISC-V for CRYSTALS-Kyber
    Dolmeta, Alessandra
    Mirigaldi, Mattia
    Martina, Maurizio
    Masera, Guido
    PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2023, CF 2023, 2023, : 381 - 382
  • [32] Optimization of a Line Detection Algorithm for Autonomous Vehicles on a RISC-V with Accelerator
    Belda, Maria Jose
    Olcoz, Katzalin
    Castro, Fernando
    Tirado, Francisco
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2022, 22 (02): : 129 - 140
  • [33] BlackParrot: An Agile Open-Source RISC-V Multicore for Accelerator SoCs
    Petrisko, Daniel
    Gilani, Farzam
    Wyse, Mark
    Jung, Dai Cheol
    Davidson, Scott
    Gao, Paul
    Zhao, Chun
    Azad, Zahra
    Canakci, Sadullah
    Veluri, Bandhav
    Guarino, Tavio
    Joshi, Ajay
    Oskin, Mark
    Taylor, Michael Bedford
    IEEE MICRO, 2020, 40 (04) : 93 - 102
  • [34] Efficient Accelerator for Depthwise Separable Convolutional Neural Networks Based on RISC-V
    Cao, Xi-Yu
    Chen, Xin
    Wei, Tong-Quan
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (11): : 2536 - 2551
  • [35] Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim
    Farshchi, Farzad
    Huang, Qijing
    Yun, Heechul
    2019 2ND WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING FOR EMBEDDED APPLICATIONS (EMC2 2019), 2019, : 21 - 25
  • [36] Implementation and integration of NTT/INTT accelerator on RISC-V for CRYSTALS-Kyber
    Dolmeta, Alessandra
    Martina, Maurizio
    Valpreda, Emanuele
    Masera, Guido
    PROCEEDINGS OF THE 21ST ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2024-WORKSHOPS AND SPECIAL SESSIONS, CF 2024 COMPANION, 2024, : 59 - 62
  • [37] Quark: An Integer RISC-V Vector Processor for Sub-Byte Quantized DNN Inference
    AskariHemmat, MohammadHossein
    Dupuis, Theo
    Fournier, Yoan
    El Zarif, Nizar
    Cavalcante, Matheus
    Perotti, Matteo
    Gurkaynak, Frank
    Benini, Luca
    Leduc-Primeau, Francois
    Savaria, Yvon
    David, Jean-Pierre
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [38] Variable Bit-Precision Vector Extension for RISC-V Based Processors
    Risikesh, R. K.
    Sinha, Sharad
    Rao, Nanditha
    2021 IEEE 14TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2021), 2021, : 114 - 121
  • [39] Mix-GEMM: Extending RISC-V CPUs for Energy-Efficient Mixed-Precision DNN Inference Using Binary Segmentation
    Fornt, Jordi
    Reggiani, Enrico
    Fontova-Musté, Pau
    Rodas, Narcís
    Pappalardo, Alessandro
    Sabri Unsal, Osman
    Kestelman, Adrián Cristal
    Altet, Josep
    Moll, Francesc
    Abella, Jaume
    IEEE Transactions on Computers, 2025, 74 (02) : 582 - 596
  • [40] HWST128: Complete Memory Safety Accelerator on RISC-V with Metadata Compression
    Dow, Hsu-Kang
    Li, Tuo
    Parameswaran, Sri
    PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 709 - 714