Quark: An Integer RISC-V Vector Processor for Sub-Byte Quantized DNN Inference

被引:3
|
作者
AskariHemmat, MohammadHossein [1 ]
Dupuis, Theo [1 ]
Fournier, Yoan [1 ]
El Zarif, Nizar [1 ]
Cavalcante, Matheus [2 ]
Perotti, Matteo [2 ]
Gurkaynak, Frank [2 ]
Benini, Luca [2 ]
Leduc-Primeau, Francois [1 ]
Savaria, Yvon [1 ]
David, Jean-Pierre [1 ]
机构
[1] Ecole Polytech Montreal, Dept Elect Engn, Montreal, PQ, Canada
[2] Swiss Fed Inst Technol, Integrated Syst Lab, Zurich, Switzerland
关键词
RISC-V; Vector ISA; Quantization; Machine Learning; Efficiency; ENERGY;
D O I
10.1109/ISCAS46773.2023.10181985
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present Quark, an integer RISC-V vector processor specifically tailored for sub-byte DNN inference. Quark is implemented in GlobalFoundries' 22FDX FD-SOI technology. It is designed on top of Ara, an open-source 64-bit RISC-V vector processor. To accommodate sub-byte DNN inference, Quark extends Ara by adding specialized vector instructions to perform sub-byte quantized operations. We also remove the floating-point unit from Quarks' lanes and use the CVA6 RISC-V scalar core for the re-scaling operations that are required in quantized neural network inference. This makes each lane of Quark 2 times smaller and 1.9 times more power efficient compared to the ones of Ara. In this paper we show that Quark can run quantized models at sub-byte precision. Notably we show that for 1-bit and 2-bit quantized models, Quark can accelerate computation of Conv2d over various ranges of inputs and kernel sizes.
引用
收藏
页数:5
相关论文
共 42 条
  • [1] Sparq: A Custom RISC-V Vector Processor for Efficient Sub-Byte Quantized Inference
    Dupuis, Theo
    Fournier, Yoan
    AskariHemmat, MohammadHossein
    El Zarif, Nizar
    Leduc-Primeau, Francois
    David, Jean Pierre
    Savaria, Yvon
    2023 21ST IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS, 2023,
  • [2] A Scalable RISC-V Vector Processor Enabling Efficient Multi-Precision DNN Inference
    Wang, Chuanning
    Fang, Chao
    Wu, Xiao
    Wang, Zhongfeng
    Lin, Jun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [3] A Mixed-Precision RISC-V Processor for Extreme-Edge DNN Inference
    Ottavi, Gianmarco
    Garofalo, Angelo
    Tagliavini, Giuseppe
    Conti, Francesco
    Benini, Luca
    Rossi, Davide
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 512 - 517
  • [4] RISC-V2: A Scalable RISC-V Vector Processor
    Patsidis, Kariofyllis
    Nicopoulos, Chrysostomos
    Sirakoulis, Georgios Ch
    Dimitrakopoulos, Giorgos
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [5] A Minimal RISC-V Vector Processor for Embedded Systems
    Johns, Matthew
    Kazmierski, Tom J.
    PROCEEDINGS OF THE 2020 FORUM FOR SPECIFICATION AND DESIGN LANGUAGES (FDL), 2020,
  • [6] A Soft RISC-V Vector Processor for Edge-AI
    Chander, V. Naveen
    Varghese, Kuruvilla
    2022 35TH INTERNATIONAL CONFERENCE ON VLSI DESIGN (VLSID 2022) HELD CONCURRENTLY WITH 2022 21ST INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS (ES 2022), 2022, : 263 - 268
  • [7] RISC-HD: Lightweight RISC-V Processor for Efficient Hyperdimensional Computing Inference
    Taheri, Farhad
    Bayat-Sarmadi, Siavash
    Hadayeghparast, Shahriar
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (23) : 24030 - 24037
  • [8] A Heterogeneous RISC-V Processor for Efficient DNN Application in Smart Sensing System
    Zhang, Haifeng
    Wu, Xiaoti
    Du, Yuyu
    Guo, Hongqing
    Li, Chuxi
    Yuan, Yidong
    Zhang, Meng
    Zhang, Shengbing
    SENSORS, 2021, 21 (19)
  • [9] FullPack: Full Vector Utilization for Sub-Byte Quantized Vector-Matrix Multiplication on General Purpose CPUs
    Katebi H.
    Asadi N.
    Goudarzi M.
    IEEE Computer Architecture Letters, 2024, 23 (02) : 1 - 4
  • [10] Soft Error Assessment of CNN Inference Models Running on a RISC-V Processor
    Gava, Jonas
    Dorneles, Guilherme
    Reis, Ricardo
    Garibotti, Rafael
    Ost, Luciano
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,