BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

被引:5
|
作者
Askarihemmat, Mohammadhossein [1 ]
Wagner, Sean [2 ]
Bilaniuk, Olexa [3 ]
Hariri, Yassine [4 ]
Savaria, Yvon [1 ]
David, Jean-Pierre [1 ]
机构
[1] Ecole Polytechn Montreal, Montreal, PQ, Canada
[2] IBM Corp, Toronto, ON, Canada
[3] Mila, Montreal, PQ, Canada
[4] CMC Microsyst, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
neural networks; hardware acceleration; FPGA; low-precision;
D O I
10.1145/3566097.3567872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a DNN accelerator that allows inference at arbitrary precision with dedicated processing elements that are configurable at the bit level. Our DNN accelerator has 8 Processing Elements controlled by a RISC-V controller with a combined 8.2 TMACs of computational power when implemented with the recent Alveo U250 FPGA platform. We develop a code generator tool that ingests CNN models in ONNX format and generates an executable command stream for the RISC-V controller. We demonstrate the scalable throughput of our accelerator by running different DNN kernels and models when different quantization levels are selected. Compared to other low precision accelerators, our accelerator provides run time programmability without hardware reconfiguration and can accelerate DNNs with multiple quantization levels, regardless of the target FPGA size. BARVINN is an open source project and it is available at https://github.com/hossein1387/BARVINN.
引用
下载
收藏
页码:483 / 489
页数:7
相关论文
共 50 条
  • [1] An Automated Compiler for RISC-V Based DNN Accelerator
    Wu, Zheng
    Xie, Wuzhen
    Yi, Xiaoling
    Yang, Haitao
    Pu, Ruiyao
    Xiong, Xiankui
    Yao, Haidong
    Chen, Chixiao
    Tao, Jun
    Yang, Fan
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3097 - 3101
  • [2] Energy-Efficient Nonvolatile RISC-V CPU with a Custom Instruction-Controlled Accelerator
    Sakamoto, Keisuke
    Natsui, Masanori
    Hanyu, Takahiro
    2022 IEEE 65TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS 2022), 2022,
  • [3] CORDIC Accelerator for RISC-V
    Yildiz, Recep Onur
    Yilmazer-Metin, Ayse
    2021 29TH TELECOMMUNICATIONS FORUM (TELFOR), 2021,
  • [4] Exploring RISC-V Based DNN Accelerators
    Liu, Qiankun
    Amiri, Sam
    Ost, Luciano
    2024 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS, COINS 2024, 2024, : 30 - 34
  • [5] A Mixed-Precision RISC-V Processor for Extreme-Edge DNN Inference
    Ottavi, Gianmarco
    Garofalo, Angelo
    Tagliavini, Giuseppe
    Conti, Francesco
    Benini, Luca
    Rossi, Davide
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 512 - 517
  • [6] Functional Verification of a RISC-V Vector Accelerator
    Jimenez, Victor
    Rodriguez, Mario
    Dominguez, Marc
    Sans, Josep
    Diaz, Ivan
    Valente, Luca
    Guglielmi, Vito Luca
    Quiroga, Josue V. V.
    Genovese, R. Ignacio
    Sonmez, Nehir
    Palomar, Oscar
    Moreto, Miquel
    IEEE DESIGN & TEST, 2023, 40 (03) : 36 - 44
  • [7] Digital Signal Processing Accelerator for RISC-V
    Calicchia, L.
    Ciotoli, V.
    Cardarilli, G. C.
    Di Nunzio, L.
    Fazzolari, R.
    Nannarelli, A.
    Re, M.
    2019 26TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2019, : 703 - 706
  • [8] RISC-V Barrel Processor for Accelerator Control
    AskariHemmat, MohammadHossein
    Bilaniuk, Olexa
    Wagner, Sean
    Savaria, Yvon
    David, Jean-Pierre
    28TH IEEE INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2020, : 212 - 212
  • [9] A Scalable RISC-V Vector Processor Enabling Efficient Multi-Precision DNN Inference
    Wang, Chuanning
    Fang, Chao
    Wu, Xiao
    Wang, Zhongfeng
    Lin, Jun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [10] A fine-grained mixed precision DNN accelerator using a two-stage big-little core RISC-V MCU
    Zhang, Li
    Lv, Qishen
    Gao, Di
    Zhou, Xian
    Meng, Wenchao
    Yang, Qinmin
    Zhuo, Cheng
    INTEGRATION-THE VLSI JOURNAL, 2023, 88 : 241 - 248