Optimal control methods for quantum batteries

被引:34
|
作者
Mazzoncini, Francesco [1 ,2 ]
Cavina, Vasco [2 ,3 ]
Andolina, Gian Marcello [2 ,4 ]
Erdman, Paolo Andrea [5 ]
Giovannetti, Vittorio [2 ]
机构
[1] Inst Polytech Paris, Telecom Paris LTCI, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[4] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Barcelona 08860, Spain
[5] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
OPEN SYSTEM; FEEDBACK; MODEL;
D O I
10.1103/PhysRevA.107.032218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the optimal charging processes for several models of quantum batteries, finding how to maximize the energy stored in a given battery with a finite-time modulation of a set of external fields. We approach the problem using advanced tools of optimal control theory, highlighting the universality of some features of the optimal solutions, for instance the emergence of the well-known bang-bang behavior of timedependent external fields. The technique presented here is general, and we apply it to specific cases in which the energy is either pumped into the battery by external forces (direct charging) or transferred into it from an external charger (mediated charging). In this paper we focus on particular systems that consist of coupled qubits and harmonic oscillators, for which the optimal charging problem can be explicitly solved using a combined analytical-numerical approach based on our optimal control techniques. However, our approach can be applied to more complex setups, thus fostering the study of many-body effects in the charging process.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [42] Optimal Quantum Control with Poor Statistics
    Sauvage, Frederic
    Mintert, Florian
    PRX QUANTUM, 2020, 1 (02):
  • [43] Glassy Phase of Optimal Quantum Control
    Day, Alexandre G. R.
    Bukov, Marin
    Weinberg, Phillip
    Mehta, Pankaj
    Sels, Dries
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [44] Quantum parameter estimation with optimal control
    Liu, Jing
    Yuan, Haidong
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [45] Unifying methods for optimal control in non-Markovian quantum systems via process tensors
    Ortega-Taberner, Carlos
    O'Neill, Eoin
    Butler, Eoin
    Fux, Gerald E.
    Eastham, P. R.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (12):
  • [46] Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control
    Yao, Y.
    Shao, X. Q.
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [47] Quantum optimal control: Hessian analysis of the control landscape
    Shen, Zhenwen
    Hsieh, Michael
    Rabitz, Herschel
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [48] Optimal control of linear Gaussian quantum systems via quantum learning control
    Liu, Yu-Hong
    Zeng, Yexiong
    Tan, Qing-Shou
    Dong, Daoyi
    Nori, Franco
    Liao, Jie-Qiao
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [49] APPROXIMATION METHODS FOR OPTIMAL CONTROL SYNTHESIS
    HICKS, GA
    RAY, WH
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1971, 49 (04): : 522 - &
  • [50] Optimal control methods in intelligent vehicles
    Chen H.
    Guo L.
    Qu T.
    Gao B.
    Wang F.
    Chen, Hong (chenh@jlu.edu.cn), 1600, Taylor and Francis Ltd. (04): : 32 - 56