Optimal control methods for quantum batteries

被引:34
|
作者
Mazzoncini, Francesco [1 ,2 ]
Cavina, Vasco [2 ,3 ]
Andolina, Gian Marcello [2 ,4 ]
Erdman, Paolo Andrea [5 ]
Giovannetti, Vittorio [2 ]
机构
[1] Inst Polytech Paris, Telecom Paris LTCI, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[4] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Barcelona 08860, Spain
[5] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
OPEN SYSTEM; FEEDBACK; MODEL;
D O I
10.1103/PhysRevA.107.032218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the optimal charging processes for several models of quantum batteries, finding how to maximize the energy stored in a given battery with a finite-time modulation of a set of external fields. We approach the problem using advanced tools of optimal control theory, highlighting the universality of some features of the optimal solutions, for instance the emergence of the well-known bang-bang behavior of timedependent external fields. The technique presented here is general, and we apply it to specific cases in which the energy is either pumped into the battery by external forces (direct charging) or transferred into it from an external charger (mediated charging). In this paper we focus on particular systems that consist of coupled qubits and harmonic oscillators, for which the optimal charging problem can be explicitly solved using a combined analytical-numerical approach based on our optimal control techniques. However, our approach can be applied to more complex setups, thus fostering the study of many-body effects in the charging process.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Optimal control, geometry, and quantum computing
    Nielsen, Michael A.
    Dowling, Mark R.
    Gu, Mile
    Doherty, Andrew C.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [32] Quantum optimal control of HCN isomerization
    Artamonov, Maxim
    Ho, Tak-San
    Rabitz, Herschel
    CHEMICAL PHYSICS, 2006, 328 (1-3) : 147 - 155
  • [33] Quantum optimal control of ozone isomerization
    Artamonov, M
    Ho, TS
    Rabitz, H
    CHEMICAL PHYSICS, 2004, 305 (1-3) : 213 - 222
  • [34] Optimal Control of Families of Quantum Gates
    Sauvage, Frederic
    Mintert, Florian
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [35] Chattering phenomenon in quantum optimal control
    Robin, R.
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    NEW JOURNAL OF PHYSICS, 2022, 24 (12):
  • [36] Optimal control in a quantum cooling problem
    Salamon, Peter
    Hoffmann, Karl Heinz
    Tsirlin, Anatoly
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1263 - 1266
  • [37] QuOCS: The quantum optimal control suite
    Rossignolo, Marco
    Reisser, Thomas
    Marshall, Alastair
    Rembold, Phila
    Pagano, Alice
    Vetter, Philipp J.
    Said, Ressa S.
    Mueller, Matthias M.
    Motzoi, Felix
    Calarco, Tommaso
    Jelezko, Fedor
    Montangero, Simone
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 291
  • [38] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [39] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    Physical Review A, 2023, 108 (02):
  • [40] OPTIMAL-CONTROL OF QUANTUM OBJECTS
    HAO, DN
    AUTOMATION AND REMOTE CONTROL, 1986, 47 (02) : 162 - 168