Federated Learning Over Wireless Networks: Challenges and Solutions

被引:7
|
作者
Beitollahi, Mahdi [1 ]
Lu, Ning [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
关键词
Communication resources; federated learning (FL); power limitation; wireless networks; STOCHASTIC GRADIENT DESCENT; PRIVACY; OPTIMIZATION; CONVERGENCE; FRAMEWORK; SECURITY;
D O I
10.1109/JIOT.2023.3285868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by ever-increasing computational resources at edge devices and increasing privacy concerns, a new machine learning (ML) framework called federated learning (FL) has been proposed. FL enables user devices, such as mobile and Internet of Things (IoT) devices, to collaboratively train an ML model by only sending the model parameters instead of raw data. FL is considered the key enabling approach for privacy-preserving, distributed ML systems. However, FL requires frequent exchange of learned model updates between multiple user devices and the cloud/edge server, which introduces a significant communication overhead and hence imposes a major challenge in FL over wireless networks that are limited in communication resources. Moreover, FL consumes a considerable amount of energy in the process of transmitting learned model updates, which imposes another challenge in FL over wireless networks that usually include unplugged devices with limited battery resources. Besides, there are still other privacy issues in practical implementations of FL over wireless networks. In this survey, we discuss each of the mentioned challenges and their respective state-of-the-art proposed solutions in an in-depth manner. By illustrating the tradeoff between each of the solutions, we discuss the underlying effect of the wireless network on the performance of FL. Finally, by highlighting the gaps between research and practical implementations, we identify future research directions for engineering FL over wireless networks.
引用
下载
收藏
页码:14749 / 14763
页数:15
相关论文
共 50 条
  • [11] Energy Efficient Federated Learning Over Wireless Communication Networks
    Yang, Zhaohui
    Chen, Mingzhe
    Saad, Walid
    Hong, Choong Seon
    Shikh-Bahaei, Mohammad
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 1935 - 1949
  • [12] Convergence Time Optimization for Federated Learning Over Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2457 - 2471
  • [13] Time-Triggered Federated Learning Over Wireless Networks
    Zhou, Xiaokang
    Deng, Yansha
    Xia, Huiyun
    Wu, Shaochuan
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 11066 - 11079
  • [14] Accelerating Split Federated Learning Over Wireless Communication Networks
    Xu, Ce
    Li, Jinxuan
    Liu, Yuan
    Ling, Yushi
    Wen, Miaowen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 5587 - 5599
  • [15] Performance Optimization of Federated Learning over Mobile Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [16] Delay Minimization of Federated Learning Over Wireless Powered Communication Networks
    Poposka, Marija
    Pejoski, Slavche
    Rakovic, Valentin
    Denkovski, Daniel
    Gjoreski, Hristijan
    Hadzi-Velkov, Zoran
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 108 - 112
  • [17] Federated Deep Learning for Immersive Virtual Reality over Wireless Networks
    Chen, Mingzhe
    Semiari, Omid
    Saad, Walid
    Liu, Xuanlin
    Yin, Changchuan
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [18] Federated Learning Over Wireless IoT Networks With Optimized Communication and Resources
    Chen, Hao
    Huang, Shaocheng
    Zhang, Deyou
    Xiao, Ming
    Skoglund, Mikael
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16592 - 16605
  • [19] Federated Learning over Wireless Networks: Optimization Model Design and Analysis
    Tran, Nguyen H.
    Bao, Wei
    Zomaya, Albert
    Nguyen, Minh N. H.
    Hong, Choong Seon
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2019), 2019, : 1387 - 1395
  • [20] Adaptive Model Pruning and Personalization for Federated Learning over Wireless Networks
    Liu, Xiaonan
    Ratnarajah, Tharmalingam
    Sellathurai, Mathini
    Eldar, Yonina C.
    IEEE Transactions on Signal Processing, 2024, 72 : 4395 - 4411