Accelerating Split Federated Learning Over Wireless Communication Networks

被引:0
|
作者
Xu, Ce [1 ]
Li, Jinxuan [2 ]
Liu, Yuan [1 ]
Ling, Yushi [2 ]
Wen, Miaowen [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[2] Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, CSG, Guangzhou 510620, Peoples R China
关键词
Split federated learning; model splitting; resource allocation;
D O I
10.1109/TWC.2023.3327372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of artificial intelligence (AI) provides opportunities for the promotion of deep neural network (DNN)-based applications. However, the large amount of parameters and computational complexity of DNN makes it difficult to deploy it on edge devices which are resource-constrained. An efficient method to address this challenge is model partition/splitting, in which DNN is divided into two parts which are deployed on device and server respectively for co-training or co-inference. In this paper, we consider a split federated learning (SFL) framework that combines the parallel model training mechanism of federated learning (FL) and the model splitting structure of split learning (SL). We consider a practical scenario of heterogeneous devices with individual split points of DNN. We formulate a joint problem of split point selection and bandwidth allocation to minimize the system latency. By using alternating optimization, we decompose the problem into two sub-problems and solve them optimally. Experiment results demonstrate the superiority of our work in latency reduction and accuracy improvement.
引用
下载
收藏
页码:5587 / 5599
页数:13
相关论文
共 50 条
  • [1] Asynchronous Federated Learning over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Wang, Jue
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [2] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [3] Energy Efficient Federated Learning Over Wireless Communication Networks
    Yang, Zhaohui
    Chen, Mingzhe
    Saad, Walid
    Hong, Choong Seon
    Shikh-Bahaei, Mohammad
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 1935 - 1949
  • [4] Optimizing Privacy and Latency Tradeoffs in Split Federated Learning Over Wireless Networks
    Lee, Joohyung
    Seif, Mohamed
    Cho, Jungchan
    Poor, H. Vincent
    IEEE Wireless Communications Letters, 2024, 13 (12) : 3439 - 3443
  • [5] Delay Minimization of Federated Learning Over Wireless Powered Communication Networks
    Poposka, Marija
    Pejoski, Slavche
    Rakovic, Valentin
    Denkovski, Daniel
    Gjoreski, Hristijan
    Hadzi-Velkov, Zoran
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 108 - 112
  • [6] Federated Learning Over Wireless IoT Networks With Optimized Communication and Resources
    Chen, Hao
    Huang, Shaocheng
    Zhang, Deyou
    Xiao, Ming
    Skoglund, Mikael
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16592 - 16605
  • [7] Federated Learning based Audio Semantic Communication over Wireless Networks
    Tong, Haonan
    Yang, Zhaohui
    Wang, Sihua
    Hu, Ye
    Saad, Walid
    Yin, Changchuan
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [8] Secure Federated Learning over Wireless Communication Networks with Model Compression
    DING Yahao
    Mohammad SHIKH-BAHAEI
    YANG Zhaohui
    HUANG Chongwen
    YUAN Weijie
    ZTE Communications, 2023, 21 (01) : 46 - 54
  • [9] Communication-Efficient Federated Multitask Learning Over Wireless Networks
    Ma, Haoyu
    Guo, Huayan
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 609 - 624
  • [10] Communication Efficient Federated Learning With Energy Awareness Over Wireless Networks
    Jin, Richeng
    He, Xiaofan
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5204 - 5219