Convergence Time Optimization for Federated Learning Over Wireless Networks

被引:185
|
作者
Chen, Mingzhe [1 ,2 ]
Poor, H. Vincent [2 ]
Saad, Walid [3 ]
Cui, Shuguang [4 ,5 ]
机构
[1] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Virginia Tech, Bradley Dept Elect & Comp Engn, Wireless VT, Blacksburg, VA 24060 USA
[4] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[5] Chinese Univ Hong Kong, Future Network Intelligence Inst FNii, Shenzhen 518172, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Training; Solid modeling; Wireless networks; Data models; Resource management; Optimization; Convergence; Federated learning; wireless resource allocation; probabilistic user selection; artificial neural networks; NEURAL-NETWORKS;
D O I
10.1109/TWC.2020.3042530
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL training loss and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that can select the users who can contribute toward improving the FL convergence speed more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time and the FL training loss. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on the global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to improve the global model, the FL convergence speed, and the training loss. Simulation results show that the proposed approach can reduce the FL convergence time by up to 56% and improve the accuracy of identifying handwritten digits by up to 3%, compared to a standard FL algorithm.
引用
收藏
页码:2457 / 2471
页数:15
相关论文
共 50 条
  • [1] Convergence Time Minimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [2] Convergence Time Minimization for Federated Reinforcement Learning over Wireless Networks
    Wang, Sihua
    Chen, Mingzhe
    Yin, Changchuan
    Poor, H. Vincent
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 246 - 251
  • [3] Joint Optimization of Convergence and Latency for Hierarchical Federated Learning Over Wireless Networks
    Sun, Haofeng
    Tian, Hui
    Zheng, Jingheng
    Ni, Wanli
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 691 - 695
  • [4] On the Convergence Time of Federated Learning Over Wireless Networks Under Imperfect CSI
    Pase, Francesco
    Giordani, Marco
    Zorzi, Michele
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [5] Performance Optimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [6] Time Efficient Joint Optimization Federated Learning over Wireless Communication Networks
    Junshuai Sun
    Yingying Wang
    Xin Sun
    Na Li
    Gaofeng Nie
    China Communications, 2022, 19 (06) : 169 - 178
  • [7] Time efficient joint optimization federated learning over wireless communication networks
    Sun, Junshuai
    Wang, Yingying
    Sun, Xin
    Li, Na
    Nie, Gaofeng
    CHINA COMMUNICATIONS, 2022, 19 (06) : 169 - 178
  • [8] Convergence Analysis and System Design for Federated Learning Over Wireless Networks
    Wan, Shuo
    Lu, Jiaxun
    Fan, Pingyi
    Shao, Yunfeng
    Peng, Chenghui
    Letaief, Khaled B.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3622 - 3639
  • [9] Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Minh N. H.
    Hong, Choong Seon
    Bao, Wei
    Zomaya, Albert Y.
    Gramoli, Vincent
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (01) : 398 - 409
  • [10] Performance Optimization of Federated Learning over Mobile Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,